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A B S T R A C T   

Early-life adversity has profound consequences for youth neurodevelopment and adjustment; however, experi-
ences of adversity are heterogeneous and interrelated in complex ways that can be difficult to operationalize and 
organize in developmental research. We sought to characterize the underlying dimensional structure of co- 
occurring adverse experiences among a subset of youth (ages 9–10) from the Adolescent Brain Cognitive 
Development (ABCD) Study (N = 7115), a community sample of youth in the United States. We identified 60 
environmental and experiential variables that reflect adverse experiences. Exploratory factor analysis identified 
10 robust dimensions of early-life adversity co-occurrence, corresponding to conceptual domains such as care-
giver substance use and biological caregiver separation, caregiver psychopathology, caregiver lack of support, 
and socioeconomic disadvantage / neighborhood lack of safety. These dimensions demonstrated distinct asso-
ciations with internalizing problems, externalizing problems, cognitive flexibility, and inhibitory control. Non- 
metric multidimensional scaling characterized qualitative similarity among the 10 identified dimensions. Re-
sults supported a nonlinear three-dimensional structure representing early-life adversity, including continuous 
gradients of “perspective”, “environmental uncertainty”, and “acts of omission/commission”. Our findings sug-
gest that there are distinct dimensions of early-life adversity co-occurrence in the ABCD sample at baseline, and 
the resulting dimensions may have unique implications for neurodevelopment and youth behavior.   

Exposure to early-life adversity (ELA) is common, with more than 
half of youth experiencing at least one adverse event prior to age 18 
(McLaughlin, 2016; Merrick et al., 2018). It is well established that these 
adverse experiences can have far-reaching consequences for mental 
health (Alisic et al., 2014; Copeland et al., 2011; McLaughlin et al., 
2012) and cognitive functioning (Hostinar et al., 2012; Mueller et al., 
2010). ELA exposures vary qualitatively across a wide range of experi-
ences such as emotional abuse or neglect, caregiver substance use, 
caregiver separation, and physical abuse or neglect, and these experi-
ences also vary along other key features, such as chronicity, timing, and 
severity (Cohodes et al., 2021; Ellis et al., 2009; Fox et al., 2010; Gee and 
Casey, 2015; McLaughlin and Sheridan, 2016; Teicher et al., 2018; 

Tottenham and Sheridan, 2010). Increasing evidence suggests that 
different dimensions and features of early-life adversity are associated 
with unique outcomes (McLaughlin et al., 2021; Ellis et al., 2022). 
However, given the complexity of these factors and the frequent 
co-occurrence of adverse experiences (Gee, 2021; Smith and Pollak, 
2020), it has been challenging to account precisely for heterogeneity in 
ELA, precluding a clear understanding of how, why, and when ELA 
shapes brain and behavior across development. Data-driven efforts to 
characterize the co-occurring nature of ELA is one important approach 
to advancing this understanding. Given the increasing use and necessity 
of large-scale developmental neuroimaging studies that often recruit 
from the general population (e.g., Hoffman et al., 2019; Rosenberg et al., 
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2018; Somerville et al., 2018), there is clear need to apply these 
data-driven approaches in community-based samples that are not 
necessarily enriched for adversity exposure. 

Given the wide range of possible adversity exposures and variability 
across individuals, ELA researchers face challenging decisions about 
how to meaningfully conceptualize or organize data on these exposures. 
Rich and heterogeneous data on ELA must be statistically reduced in 
some way to enhance interpretation and predictive power. To this end, a 
number of approaches have been adopted to structure ELA data. For 
example, cumulative risk models capture the summation of adverse 
experiences across different domains, aggregating all data into an 
overarching metric of total adversity exposure (Evans et al., 2013; 
Rutter, 1983). Alternatively, dimensional approaches have sought to 
identify distinct mechanistic dimensions of adversity (Wade et al., 2022) 
such as threat and deprivation (McLaughlin et al., 2014), harshness and 
unpredictability (Ellis et al., 2009), and proximity of experiences (Ellis 
et al., 2022). Empirical support suggests that different ELA dimensions 
have at least partially distinct effects on neurodevelopment and child 
behaviors (McLaughlin et al., 2019; VanTieghem and Tottenham, 2018). 
However, clearly identifying robust dimensions of adverse experiences 
is challenging, and it has been argued that researcher-defined, mecha-
nistic dimensions may be ambiguous and can generate conflicting evi-
dence (Pollak and Smith, 2021; Smith and Pollak, 2020). Moreover, 
real-world occurrences of adversity are multifaceted and co-occur in 
complicated ways, resulting in highly complex data. Data-driven 
methods to delineating heterogeneity in ELA may balance the benefits 
of predominant approaches while emphasizing naturally-occurring 
patterns of ELA in a given sample (e.g., Hong and Sisk et al., 2021). 

Recent work applying data-driven methods, often in samples 
enriched for significant adversity, has characterized meaningfully 
distinct ELA dimensions. For example, Nikolaidis et al. (2022) identified 
three stable dimensions of caregiving-related early adversities in 
school-age children via factor analytic and machine learning methods. 
The resulting factors included “Additive Caregiving-Related Early 
Adversity Exposure”, “Caregiver Emotional Maltreatment without Do-
mestic Violence”, and “Physical/Supervisory Neglect”. These di-
mensions transcend traditional socio-legal categories, highlighting the 
utility of factor analytic methods in characterizing the dimensional na-
ture of ELA. Similarly, Ford et al. (2014) identified a three-factor model 
in adults who retrospectively reported on ELA exposure. By assessing a 

wide range of adversities, they identified “Household Dysfunction”, 
“Emotional/Physical Abuse”, and “Sexual Abuse” factors, which were 
validated with confirmatory factor analysis. Similar studies have iden-
tified even more dimensions, such as “Parental Absence” (Mersky et al., 
2017), “Instability” (Cohen-Cline et al., 2019), “Social Environment” 
(Zinn et al., 2020), and “Community Adversity” (van Zyl et al., 2022). 
The variability of these identified dimensions across studies likely stems 
from a number of factors such as differences in sample ages, ELA mea-
sures, and sample size. Large-scale developmental datasets provide an 
important opportunity to identify stable, population-level dimensions of 
ELA spanning diverse features of the environment that may be more 
generalizable. 

While prior work has illustrated the promising utility of data-driven 
approaches to characterizing adversity, much of this work has relied on 
small or relatively homogenous samples that are often enriched for 
adversity exposure. Identifying ELA dimensions in a community sample 
of youth (i.e., not enriched for adversity exposure) is necessary to 
advance our knowledge about the co-occurrence of ELAs in a ‘typically’ 
developing sample, which likely differs from the co-occurrence in high 
adversity-exposed youth. For example, observed dimensions of adversity 
may be contingent on the characteristics of a given sample, and patterns 
of co-occurrence may differ in samples that have especially high 
adversity exposure, relative to normative, community samples of youth. 
Identifying stable ELA dimensions in large-scale developmental datasets 
may also help to facilitate reproducibility across studies and advance our 
understanding of the developmental sequelae of ELA. 

The Adolescent Brain Cognitive Development (ABCD) Study (Casey 
et al., 2018) offers a valuable opportunity to characterize the nature of 
ELA in a large and diverse community sample of youth across the United 
States. With nearly 12,000 participants and measures of environment 
and experience across different domains, the ABCD Study presents a 
valuable opportunity to clarify how adverse experiences relate to mental 
health and cognitive functioning among typically-developing youth. 
However, these rich data also come with challenging decisions on how 
to organize and reduce ELA data. Research that thoroughly characterizes 
co-occurring patterns of adversity in the ABCD Study will help users of 
this dataset navigate heterogeneity in the data. Furthermore, delineating 
the dimensional structure of ELA, especially within racially and 
economically diverse samples such as ABCD, is critical to understanding 
effects on youth mental health and cognitive functioning. Thus, our 

Fig. 1. Selection process for early-life adversity variables from the ABCD baseline data.  
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primary aims were to 1) characterize dimensions of ELA among youth in 
the ABCD Study at baseline (ages 9–10), and 2) examine associations 
between ELA dimensions and youth mental health and cognitive func-
tioning. Given the value of prediction as a complement to explanation in 
developmental neuroscience (Rosenberg et al., 2018), we also sought to 
evaluate the degree to which the ELA-behavior associations were 
reproducible in a separate replication dataset. In addition, it may be 

useful to understand complex adverse environments by emphasizing the 
similarity amongst specific ELA exposures as opposed to their 
co-occurrence, which is a common approach to characterizing bio-
ecological systems in other fields such as environmental science (Kenkel 
and Orlóci, 1986). An exploratory aim, therefore, was to examine the 
extent to which ELA is characterized by nonlinear environmental gra-
dients based on the similarity (vs. co-occurrence) among specific ELA 

Table 1 
Factor loadings for the ten early-life adversity dimensions.  

* indicates that the variable was reverse-scored. Y = Youth Report; CG = Caregiver Report. 
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experiences/items. 

1. Method 

1.1. Sample 

Participants were recruited from 21 sites across the U.S. as part of the 
ABCD Study (Casey et al., 2018) through presentations and emails 
delivered to caregivers of youth in local schools. Interested caregivers 
underwent a telephone screening to determine whether their children 
were eligible to participate in the study. Participants were excluded if 
they had MRI contraindications, no English fluency, uncorrected vision 
or hearing, sensorimotor impairments, major neurological disorders, 
low gestational age, low birth weight, birthing complications, or un-
willingness to complete assessments. Parental consent and assent were 
obtained from all participants. The current study used the baseline data 
provided by the ABCD consortium in the fourth annual release 
(DOI:10.15154/1523041) and included participants with complete data 
across all ELA measures (excluded N = 2739). Twins, triplets, and if 
applicable, one sibling from a family were excluded (N = 2022) from 
this analysis to limit multicollinearity. This resulted in a final sample of 
7115 youth (48 % female) with a mean age of 9.90 years (SD = 0.62). 
Median household annual income fell between $50,000 and $100,000. 
Participants identified as Asian (2 %), Black (12 %), Hispanic (19 %), 
White (56 %), and Other Race (11 %). 

1.2. Measures and variable selection 

1.2.1. Early-life adversity 
ELA variables were identified from the range of ABCD baseline 

measures (Barch et al., 2021; Hoffman et al., 2019). A total of 139 po-
tential item-level variables were selected given their relevance to ELA 
constructs such as caregiving disruption, caregiver psychopathology, 
maltreatment, neighborhood safety/violence, family/community sup-
port, socioeconomic disadvantage, and physical trauma exposure. Re-
sponses to these items were reported by the child, their parent, or 
rated/calculated by research personnel. The items selected for use in the 
current study are all from validated scales widely used in the literature, 
though the versions administered by ABCD were modified for some of 
the scales (Barch et al., 2021; see Table S1). Variables with > 50 % 
missing data (e.g., family history of depression) or < 0.05 % endorse-
ment (e.g., caregiver self-report of clinical inattention problems) were 
removed. Following procedures from Michelini et al. (2019), in cases 
where variables had very high intercorrelations (rs > 0.75), conceptu-
ally similar variables were aggregated to avoid inflation in the factor 
structure resulting from high collinearity in the data. Twenty total items 
were identified as having high intercorrelations with at least one other 
item (e.g., traumatic event items on sexual abuse by 1) an adult at home, 
2) an adult outside the family, or 3) a peer) and were aggregated with 
highly correlated items to create six different composite scores. In this 
way, we retained key ELA constructs based on prior work while mini-
mizing potential statistical bias from high collinearity. Following these 
criteria, 60 total ELA variables were selected for final analysis. See Fig. 1 
and Table S1 for details on the ELA variable selection process. The final 
variables included binary, polytomous, and continuous variables. To 
facilitate interpretation of results, all variables were coded such that 
higher scores reflected greater adversity. 

1.2.2. Psychopathology and cognitive function 
Psychopathology and cognitive function variables were used to 

assess the associations between ELA dimensions and youth outcomes. 
Psychopathology variables included T-scores for internalizing and 
externalizing behaviors from the caregiver-report Child Behavior 
Checklist (CBCL). The CBCL is a standardized, well-established instru-
ment (Achenbach and Rescorla, 2001) that provides continuous mea-
sures of externalizing problems (rule-breaking and aggressive 

behaviors) and internalizing problems (withdrawn/anxious/depressed 
behaviors and somatic complaints). Cognitive functioning was assessed 
using the uncorrected standard composite scores of two tasks from the 
NIH Toolbox: the Flanker Task and the Card-Sorting Task. The Flanker 
Task measures inhibitory control and attention, whereas the 
Card-Sorting Task measures cognitive flexibility (Thompson et al., 2019; 
Casaletto et al., 2015). Prior work has found that inhibition and flexi-
bility are two key constructs of executive functioning (Miyake and 
Friedman, 2012) in which inhibitory control is the voluntary control 
(inhibition) of goal irrelevant information and responses (Nigg, 2000; 
Tiego et al., 2018) and cognitive flexibility is the ability to shift a 
strategy to changing conditions or demands (Dajani and Uddin, 2015). 
These two domains were chosen for use in the current study given prior 
work linking ELA to both inhibition and cognitive flexibility domains 
(Johnson et al., 2021). 

2. Analytic plan 

2.1. Aim 1: identifying ELA dimensions 

Analyses were conducted in Mplus version 8.7 (Muthen and Muthen, 
1998). The 60 ELA variables were entered into an exploratory factor 
analysis (EFA), specifying continuous versus binary/categorical vari-
ables accordingly, with 1–15 possible factors and 10,000 iterations. We 
used weighted least squares mean- and variance-adjusted estimation 
(WLSMV). The optimal solution was determined based on 1) model fit 
statistics (i.e., chi-square, RMSEA, CFI, TLI), 2) number of factors with 
eigenvalues greater than 1 (Kaiser, 1960), and 3) theoretical and con-
ceptual interpretability. RMSEA values of less than .05 and CFI and TLI 
values of greater than .95 were considered an excellent fit (Bentler, 
1990; Browne and Cudeck, 1992). Next, in order to obtain factor scores, 
we ran an exploratory structural equation model (ESEM) specifying the 
number of factors identified in the EFA and with an oblique rotation. 
Following procedures from Michelini et al. (2019), ELA items were 
considered meaningful for interpretation of a factor when the loadings 
were greater than .35. 

2.1.1. Supplementary analysis 
Given the possibility that various demographic, clinical, and ELA 

variables may differ by ABCD site, we repeated the EFA when leaving 
out one site each time, for a total of 21 supplementary analyses. We 
compared the factor solutions (i.e., model fits and factor loadings) of 
each analysis to determine whether the absence of one site changed the 
factor structure of the analysis. 

2.2. Aim 2: associations between ELA dimensions and youth behavior 

ELA factor scores were calculated for each participant in Mplus by 
multiplying the ELA factor loadings from each dimension with the 
participant’s original ELA scores. To test associations between these 
factor scores and youth outcomes, we conducted a Bayesian multivariate 
multilevel model with non-informative priors using the brms 2.16.3 
package in R 4.1.2 (Bürkner, 2017, 2018; Carpenter et al., 2017; R Core 
Team, 2021). Bayesian approaches tend to outperform frequentist ap-
proaches and are more likely to reach convergence when estimating 
many parameters in complex multivariate multi-level models with fixed 
and random effects (Hackenberger, 2019). Furthermore, Bayesian ap-
proaches allow for the discussion of the probability that an alternative 
hypothesis is true given the available data and prior information 
(Lecoutre and Poitevineau, 2014). An additional benefit is that future 
investigations of ELA-behavior links using ABCD data from forthcoming 
releases will be able to incorporate the current results into a subsequent 
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model as priors (Hackenberger, 2019). After participants with missing 
psychopathology or cognitive measures were dropped (n = 432), 
random sampling stratified by study site split the dataset into discovery 
(70 %; n = 4687) and replication (30 %; n = 1996) sets to examine 
reproducibility.1 

All ELA factor scores were included as independent variables (grand 
mean-centered). The covariates were age (grand mean-centered) and sex 
(dummy-coded as − 0.5 = male and 0.5 = female). Individuals were 
nested within each study site. The model included internalizing behav-
iors, externalizing behaviors, cognitive flexibility, and inhibitory control 
as the dependent variables. All variables were scaled (mean-centered 
and unit variance of 1) to facilitate comparison of effects. Random in-
tercepts and residual correlations were modeled. Models converged 
using four chains with 2000 iterations per chain. The models were 

trained on the discovery set and then used to predict youth behaviors in 
the independent replication set. Prediction accuracy was assessed with 
non-parametric Spearman correlations between the predicted and actual 
youth behavior scores. 

2.3. Exploratory aim: multidimensional ELA representation 

Non-metric multidimensional scaling (NMDS) analysis was con-
ducted to visualize the similarity/dissimilarity of the identified ELA 
dimensions. This method projects the ELA items in a nonlinear, lower- 
dimensional space. NMDS preserves the original topology (similarity 
represented as a distance metric) of the pairwise distances between ELA 
items. This approach differs from other dimension reduction methods 
that rotate items to identify linear combinations to maximize the 
amount of variance explained and minimize the number of items that 
load onto each dimension (e.g., factor analysis). NMDS analyses were 
conducted with the vegan 2.5.7 package (Oksanen et al., 2020) in R 4.1.2 
(R Core Team, 2021). ELA items were scaled and Spearman correlation 

Fig. 2. Associations between early-life adversity dimensions and child behaviors were estimated in the discovery set with Bayesian multivariate multilevel models. 
The x-axis depicts the posterior distributions of the fixed effects estimating the associations between ELA factor scores and child behavior, including A) internalizing 
problems, B) externalizing problems, C) cognitive flexibility, and D) inhibitory control. The posterior credibility interval suggests that there is a 95 % chance of the 
true value falling between the lower limit and the upper limit given the sample data and a non-informative prior. 

1 There were no discovery/replication set differences in age, sex, site distri-
bution, ELA factor scores, or child behavior scores. 
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matrices were computed for each participant. Item dissimilarity 
matrices were computed for each participant and then submitted to 
Kruskal’s NMDS (1964a, 1964b). Inspection of goodness-of-fit indices (i. 
e., stress and Pseudo-R2) determined the number of dimensions. Stress is 
a measure of rank-order disagreement between the observed and fitted 
distances, with lower values indicating that the observed model fits the 
patterns observed in the raw distance patterns. Pseudo-R2 values reflect 
the degree to which the NMDS model fits the patterns in the raw data, 
with higher values indicating stronger fit. Stress values less than .01 and 
Pseudo-R2 greater than .80 indicate a good fit between the NMDS so-
lution and actual data, suggesting that we can be confident in the in-
ferences being drawn (Kruskal, 1964a, 1964b). Ordination plots were 
then generated for the optimal k-dimensional model to highlight the 
similarities between ELA items, such that ELA items that are more 

similar are closer together on the plot. 

2.4. Data availability 

Data for the ABCD Study are available through the National In-
stitutes of Health Data Archive (NDA; nih.nda.gov). The participant IDs 
included in these analyses, as well as further details on the measures 
used, can be found in this project’s NDA study (DOI:10.15154/1527711 
). The scripts and outputs for analyses are included on the Open Science 
Foundation project for this study at: https://osf.io/28cb7/? 
view_only=b7789e2eb92d40d290358a5ad623ac65. 

Fig. 3. Prediction of youth psychopathology and cognitive performance. Previously unseen youth behavior in the validation set was predicted using only the 
Bayesian multivariate multilevel models generated in the discovery set. The scatterplots display the Spearman correlations between actual child behavior scores and 
predicted scores in the independent validation set for A) internalizing problems, B) externalizing problems, C) cognitive flexibility, and D) inhibitory control. 

Fig. 4. Nonlinear, three-dimensional structure of early-life 
adversity gradients. The similarities between early-life 
adversity (ELA) items were derived from non-metric 
multidimensional scaling (NMDS) in the discovery set, 
and were projected to a three-dimensional space. Each 
point depicts an ELA item, and the colors represent eight of 
the ELA factors. Note: only eight different labels could be 
used for visualization with the R package, so conceptually 
similar dimensions were combined under one color label 
for visualization purposes (e.g., primary and secondary 
caregiver lack of support factors). When the topography 
(similarity represented as a distance metric) of ELA items 
was preserved through NMDS, three supraordinate gradi-
ents composed of ELA items spanning ELA factors were 
identified. The interpretation of the nonlinear ELA gradi-
ents should be considered preliminary and tentative.   
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3. Results 

3.1. Aim 1: identifying ELA dimensions 

Results from the EFA identified 14 factors with eigenvalues greater 
than 1. The 1-factor model demonstrated poor model fit (χ2 = 61825.83, 
df = 1710, p < .001, RMSEA = 0.07, CFI =0.39, TLI =0.37). Model fit 

improved as the number of factors increased (Table S2) and demon-
strated an excellent fit with 10 or more factors (i.e., RMSEA < 0.05, CFI 
and TLI >0.95). Thus, we compared the 10-factor solution (χ2 =

4260.83, df = 1215, p < .001, RMSEA = 0.02, CFI =0.97, TLI =0.96) 
with the 11–14 factor solutions. The 11–14 factor models were rejected 
due to limited interpretability (e.g., factors with no significant factor 
loadings). Thus, when testing the ESEM in order to obtain factor scores, 

Fig. 5. Decomposition of early-life adversity (ELA) gradients. The similarities between ELA items were derived from non-metric multidimensional scaling in the 
discovery set, and were projected to two-dimensional spaces to facilitate qualitative interpretation. Each point depicts an ELA item and the colors represent ELA 
dimensions derived from the factor analysis. Note: only eight different labels could be used for visualization with the R package, so conceptually similar dimensions 
were combined under one color label for visualization purposes (e.g., primary and secondary caregiver lack of support factors). The interpretation of the nonlinear 
ELA gradients should be considered preliminary and tentative. 
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we specified 10 total factors (see Table 1 for factor loadings). 
This model identified ELA factors related to 1) caregiver psychopa-

thology, 2) socioeconomic disadvantage and lack of neighborhood 
safety, 3) secondary caregiver lack of support, 4) primary caregiver lack 
of support, 5) child report of family conflict, 6) caregiver substance use 
and separation from biological caregivers, 7) family anger and argu-
ments, 8) family aggression, 9) physical trauma exposure, and 10) 
caregiver lack of supervision. 

3.1.1. Supplementary analysis 
Results (i.e., factor loadings and model fit statistics) were robust and 

consistent when we systematically ran the EFA removing one site each 
time. The factor loadings for each subsample are reported in the Sup-
plementary Material (Table S3). 

3.2. Aim 2: associations between ELA dimensions and youth behavior 

Fig. 2 depicts the posterior distributions of the fixed effects esti-
mating the associations between ELA factor scores and child behaviors 
in the discovery set (see Table S4-S5 for model parameters and Table S6 
and Figs. S1-S2 for raw correlations). The model accounted for 
approximately 30 % of the variance in internalizing and externalizing 
problems (R2

int =0.30, 95 % CI =0.28–0.32; R2
ext =0.29, 95 % CI 

=0.27–0.31) and 10 % of the variance in cognitive functoning measures 
(R2

cog-flexibility =0.11, 95 % CI =0.09–0.12; R2
inh-control =0.09, 95 % CI 

=0.08–0.11). As shown in Fig. 3, the prediction of youth behaviors from 
the model generated from the discovery set showed medium-to-large 
correlations between actual and predicted scores in the independent 
replication set for internalizing problems (rs =0.54, 95 % CI =0.50–0.57, 
p < .001), externalizing problems (rs =0.53, 95 % CI =0.49–0.56, 
p < .001), cognitive flexibility (rs =0.31, 95 % CI =0.27–0.35, p < .001), 
and inhibitory control (rs =0.26, 95 % CI =0.22–0.30, p < .001). All ELA 
dimensions contributed to the significant predictions except for child- 
reported family conflict and caregiver lack of supervision. 

The vast majority of associations between ELA dimensions and youth 
behavior were consistent across the discovery and replication sets. 
Higher levels of caregiver psychopathology and physical trauma expo-
sure were associated with higher internalizing and externalizing prob-
lems, but were not associated with cognitive control measures. Higher 
levels of socioeconomic disadvantage/lack of neighborhood safety were 
uniquely associated with lower cognitive flexibility and inhibitory 
control; there was no association with either internalizing or external-
izing problems. Lack of support from a primary caregiver was associated 
only with more internalizing problems but not other child behaviors, 
whereas lack of support from a secondary caregiver, family anger/ar-
guments, family verbal/physical aggression, and caregiver substance 
use / biological caregiver separation were associated only with more 
externalizing problems (and not other child behaviors). The associations 
for child-reported family conflict and caregiver lack of supervision 
observed in the discovery set were not observed in the independent 
replication set. 

3.3. Exploratory aim: multidimensional ELA representation 

The three-dimension NMDS solution provided a very good fit to the 
data (stress =0.08; Pseudo-R2 =.99; Fig. 4), which was better than the 
one- and two-dimension solutions (1-D: stress =0.28; Pseudo-R2 =.92; 2- 
D: stress =0.15; Pseudo-R2 =.98; Fig. S3). A four-dimension solution was 
considered and fit the data very well (stress =0.06, Pseudo-R2 =.99). 
The three-dimension solution was retained for parsimony given that the 
four-dimension model only provided a marginal improvement. Results 
of permutation testing (k = 10,000) indicated that all ELA items 

contributed to at least one dimension beyond what would be expected 
due to chance. 

Fig. 5 depicts a tentative, preliminary interpretation of the under-
lying ELA constructs that the three dimensions may represent.2 

Dimension 1 was characterized as “perspective” because positive values 
along this dimension consisted of the youth report measures, negative 
values consisted of the caregiver report measures, and scores near zero 
were data derived from interviews by trained research personnel. 
Dimension 2 was characterized as “environmental uncertainty”. Higher, 
positive values on dimension 2 consisted of physical trauma, socioeco-
nomic disadvantage, lack of neighborhood safety, caregiver lack of su-
pervision, caregiver substance use, and biological caregiver separation. 
By contrast, negative values on dimension 2 were characterized by more 
family conflict and caregiver psychopathology. High dimension 2 scores 
were characterized by unexpected and unpredictable experiences that 
may be more episodic (e.g., biological caregiver separation, physically 
traumatic events), whereas low dimension 2 scores were distinguished 
by volatile environments that may be experienced more consistently (e. 
g., caregiver psychopathology, family verbal/physical aggression). 
Finally, dimension 3 was characterized as “acts of commission versus 
omission”, because higher, positive scores were indicative of physical 
trauma and family verbal/physical aggression and lower, negative 
scores were distinguished by socioeconomic disadvantage (e.g., lack of 
physical resources) and lack of neighborhood safety, caregiver super-
vision, and caregiver support. 

4. Discussion 

We leveraged a data-driven approach with a large, diverse commu-
nity sample (i.e., not enriched for adversity exposure) of youth to parse 
heterogeneity in early-life adversity. Using EFA and ESEM approaches, 
we identified 10 dimensions of adversity co-occurrence pertaining to 1) 
caregiver psychopathology, 2) socioeconomic disadvantage and lack of 
neighborhood safety, 3) secondary caregiver lack of support, 4) primary 
caregiver lack of support, 5) child report of family conflict, 6) caregiver 
substance use and biological separation, 7) family anger and arguments, 
8) family aggression, 9) trauma exposure, and 10) caregiver lack of 
supervision. These ELA dimensions were associated with distinct 
behavioral correlates and robustly predicted youth behaviors in an in-
dependent replication set, highlighting the utility of these dimensions 
for characterizing developmental outcomes following ELA exposure. 
Finally, we also demonstrated that naturally co-occurring patterns of 
ELA could be represented by more complex nonlinear gradients, rather 
than linear orthogonal dimensions. 

Delineating the vast heterogeneity in adverse early life experiences 
has historically been challenging, but is a necessary step in under-
standing neural and psychological development. Small samples, com-
plex data structures, and limited measures of experience have all 
precluded clear conclusions regarding how ELAs may naturally co- 
occur, especially in broader community samples that are not enriched 
for ELA. We capitalized on “big data” from the ABCD Study and data- 
driven techniques to address some of these limitations and charac-
terize a broad spectrum of ELA dimensions in a normative, community 
sample. These types of large-scale developmental datasets with wide- 
ranging variables often require more complex methods. For example, 
we used ESEM to handle the varied measurement types and skewed 
distributions inherent to many ELAs in the context of a national sample. 
Results from these models indicated that a 1-factor solution had poor 
model fit, supporting the idea that statistical approaches that aggregate 
all ELAs into one variable may not reflect the actual co-occurrence 
among ELAs (Brumley et al., 2019). Rather, in this sample, a stable 
10-factor solution was identified based on model fit and interpretability 

2 Comparable dimensions were identified when examining the caregiver and 
child reports separately. 
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of the factors. The number of dimensions we identified was considerably 
higher than prior work identifying 3–4 dimensions (Ford et al., 2014; 
Nikolaidis et al., 2022), consistent with evidence that more factors and 
more complex solutions emerge as wider ranges of ELAs and more items 
are considered (Mersky et al., 2017). 

The identified ELA dimensions shed light on which experiences are 
likely to co-occur for a child and may facilitate future inquiries into the 
neurodevelopmental mechanisms through which ELAs relate to child 
behavior. Nearly all of the ELA dimensions reflect experiences that 
disrupt caregiver-child relationships or result in the absence of stable 
and/or safe caregiving, given the many caregiving-related measures that 
are included in the ABCD Study. One ELA dimension reflected co- 
occurrence of caregiver substance use and child separation from bio-
logical caregivers, perhaps stemming from child custody issues related 
to caregiver substance use disorders or substance-related arrests 
(Freisthler and Weiss, 2008). ELA dimensions that indicated the po-
tential presence of caregiver-related emotional maltreatment (i.e., 
family verbal/physical aggression, family conflict, caregiver lack of 
support, caregiver substance use / biological caregiver separation) did 
not load with ELA items related to physical trauma and/or lack of 
caregiver supervision. These findings are consistent with prior studies 
identifying caregiver-related emotional maltreatment as a unique 
dimension that has distinct phenomenology from physical abuse, 
physical neglect, or supervisory neglect (Lambert et al., 2017; Matsu-
moto et al., 2020; Nikolaidis et al., 2022). Insufficient caregiver 
emotional support and supervision also had distinct developmental 
correlates, with internalizing and externalizing problems being linked 
only to lack of caregiver support. The reproducibility and out-of-sample 
predictive value of these associations provide an empirical justification 
for continued examinations into dimensions of caregiver-related 
emotional maltreatment. 

One ELA dimension did not directly relate to the caregiver-child 
relationship, which included family socioeconomic factors (income, 
education, ability to pay for necessities), neighborhood safety, and the 
Area Deprivation Index (an approximation of neighborhood socioeco-
nomic disadvantage; Kind and Buckingham, 2018). The presence of this 
dimension suggests that socioeconomic factors across multiple levels of 
a child’s environment may converge, consistent with evidence that 
family and neighborhood socioeconomic factors are interrelated 
(Strickhouser and Sutin, 2020). Families living in lower socioeconomic 
status neighborhoods are also exposed to more harms, such as inter-
personal violence (Chong et al., 2015), and are more likely to have 
concerns about neighborhood safety (Meyer et al., 2014). Consistent 
with these reports, our results showed that neighborhood socioeconomic 
disadvantage and neighborhood safety clustered together. Prevailing 
dimensional theories posit that experiences of physical deprivation 
linked to poverty (e.g., lack of physical/financial resources) are associ-
ated with distinct neural mechanisms and behaviors than community 
violence exposure (McLaughlin et al., 2014). Our findings suggest that, 
at least in some samples, it may be challenging to disentangle the 
developmental sequelae of these experiences given their natural 
co-occurrence. Of note, higher scores on this dimension were associated 
with poorer cognitive control and had the largest influence on 
out-of-sample predictions of cognitive control, but were related to fewer 
internalizing problems and had no link to externalizing problems. The 
cognitive control findings may be consistent with observations that 
smaller cortical volumes and greater cortical thinning are linked to both 
socioeconomic disadvantage and neighborhood violence (Butler et al., 
2018; Machlin et al., 2019; Miller et al., 2022; Noble, 2015; Whittle 
et al., 2017). Taken together, these results suggest that future studies 
seeking to understand social and economic influences on children’s 
cognitive development would benefit from consideration of both 
family-level and community-level factors, including perceptions of 
safety and violence. 

While the specific dimensions of co-occurrence that were identified 
align in part with existing theoretical and empirical work, there are also 

important differences that may be attributed to the goal of the dimen-
sion reduction, the breadth of the measures used, and the nature of the 
sample. Namely, a large portion of this theoretical and empirical work 
has been derived from samples that have been enriched for significant 
adversity, such as early institutional care or caregiving adversity 
(McLaughlin et al., 2014; Nikolaidis et al., 2022). The dimensional 
structure and heterogeneity in experiences may vary in the broader 
population, as we sought to investigate here with the community sample 
of youth in the ABCD Study. This area of work will benefit from testing 
predictions from dimensional models and evaluating heterogeneity in 
adversity across a wide range of contexts, cultures, and experiences to 
identify areas of convergence or divergence. 

Given the complex relationships between ELA and child develop-
ment, no single approach is likely to fully capture this complicated and 
dynamic system. The linear "simple structure” of ELA dimensions 
derived from factor analysis provides one means of representing expe-
riential heterogeneity. Results further indicated that nonlinear multi-
dimensional representations prioritizing the similarity (pair-wise 
distances) amongst ELAs (rather than their co-occurrence) may be a 
useful approach. This representation accounted for more variability in 
ELA patterns than other data-driven approaches to dimension reduction, 
and the complex dimensional structure was replicated in an independent 
sample, suggesting some stability. The three nonlinear and interacting 
ELA gradients transcended the different ELA measures, revealing un-
derlying constructs tentatively interpreted as 1) ELA perspective (who is 
observing and reporting on children’s experiences); 2) environmental 
uncertainty (ranging from highly unpredictable, episodic events such as 
biological caregiver separation to more consistently volatile home en-
vironments) (Ellis et al., 2009); and 3) acts of commission (presence of 
distressing events) versus omission (absence of enriching experiential 
inputs) (Humphreys and Zeanah, 2015). Overall, the continuous, 
nonlinear nature of the ELA gradients may align well with an integrative 
topological conceptualization of ELA as depending on a range of adverse 
event features, aspects of proximal and distal environments, and 
contextual factors that dynamically shape children’s experiences of their 
early environments (Cohodes et al., 2021; Pollak and Smith, 2021; Smith 
and Pollak, 2020). 

Although thoughtfully considered, the researcher-imposed, sug-
gested interpretations of the ELA gradients do not preclude other plau-
sible interpretations. The ELA perspective gradient (gradient 1) may in 
part be driven by shared method variance. However, it is unlikely that 
this dimension is solely the result of this methodological artifact, as 
sensitivity analyses estimating the models with parent and child report 
data separately identified a comparable ELA perspective gradient 
distinguished by subjective (e.g., child report of family violence) and 
objective perspectives (e.g., demographic indices of poverty). The role of 
subjective (vs. objective) perceptions in ELA is an active area of inquiry, 
with theoretical reasons to expect meaningful variation in child devel-
opmental outcomes as a function of who is making the report (Baldwin 
and Degli Esposti, 2021; Danese and Widom, 2020; Smith and Pollak, 
2020). With regard to the environmental uncertainty gradient (gradient 
2), higher scores included indicators of SES that could instead be 
interpreted as more stable or chronic influences (e.g., parental educa-
tion, household income), rather than unpredictable events in the child’s 
proximal home environment. However, this part of the gradient also 
included related yet distinct factors such as community violence and 
caregiver separation. Collectively, we interpreted these factors as 
possible indicators of uncertainty in physical aspects of the environment 
that could be construed as discrete, acute events that occur unpredict-
ably. An alternative interpretation is that gradient 2 may capture ex-
periences that are more closely linked to socioeconomic disadvantage 
(such as community violence, parental substance abuse, physical abuse), 
ranging to experiences that are equally likely to occur at any point of the 
socioeconomic stratum (such as verbal emotional abuse or caregiver 
internalizing and externalizing problems). Future work that seeks to 
extend this environmental gradient approach with the inclusion of other 

A. Brieant et al.                                                                                                                                                                                                                                 



Developmental Cognitive Neuroscience 61 (2023) 101256

10

indices of environmental uncertainty would be valuable. 
The results should be interpreted in the context of several limita-

tions. First, while the ABCD Study indexes a range of early experiences, 
there are nonetheless numerous experiences that are unaccounted for (e. 
g., caregiving instability, caregiver incarceration, identity-based 
discrimination) that may have further differentiated ELA dimensions. 
Relatedly, information on key ELA features such as timing, severity, 
predictability, and chronicity were not available. Non-human animal 
models and smaller human samples enriched for ELAs that allow for 
deeper phenotyping of early life experiences are a crucial complement to 
large-scale developmental datasets for identifying developmental 
mechanisms. Second, because of the nature of the measures that are 
included in the ABCD Study, many of the items clustered together based 
on the measure that they were part of. Thus, it is possible that the 
identified dimensions were, in part, artifacts of the measurements used 
in this particular study rather than “real world” patterns of co- 
occurrence. We sought to minimize researcher bias in characterizing 
adversity dimensions by applying a data-driven approach, but findings 
are nonetheless constrained by the measures that are included in a 
battery, as well as the concepts of adversity that researchers have in 
mind when measures are developed. Refined assessment approaches 
that minimize researcher preconceptions and maximize individuals’ 
lived experiences may further strengthen this area of work. At the same 
time, we note that not all items clustered simply based on measure; for 
example, the socioeconomic disadvantage and lack of neighborhood 
safety factor included items spanning several different measures, 
including the demographic interview, neighborhood safety question-
naire, and area deprivation index. Additionally, in the associations be-
tween the ELA dimensions and youth behavior, we were unable to 
account for important factors such as heritability of psychopathology 
and parent reporting styles or biases, which may have also contributed 
to the observed effects. Furthermore, these were cross-sectional ana-
lyses; however, the application of predictive modeling provided an 
important opportunity to establish the specificity and generalizability of 
ELA dimension-behavior associations. Future work will be necessary to 
clarify the temporal associations between ELA dimensions and youth 
outcomes and to evaluate possible neurobiological mechanisms. Despite 
these limitations, our results extend and strengthen prior work by 
incorporating a wide range of variables, multiple informants, and a large 
diverse community sample of youth. Furthermore, by using a multi-
variate multi-level model with all ELA dimensions simultaneously, we 
accounted for the covariation of ELA dimensions. One major challenge 
for disentangling the complex relations between ELA experiences and 
child behaviors is the frequent co-occurrence among ELAs. When 
examining bivariate correlations (not accounting for covariation among 
ELA dimensions), most dimensions were associated with higher inter-
nalizing and externalizing problems as well as poorer cognitive control. 
However, only certain effects held after accounting for the covariation 
between ELA dimensions as well as the covaration between child out-
comes. This pattern of findings highlights the importance of assessing a 
broad range of ELA experiences in order to understand more precise 
associations with neurobehavioral outcomes. 

Here, we demonstrate that data-driven ELA dimensions of co- 
occurrence and more complex nonlinear gradient structures can facili-
tate characterization of experiential domains and parse the substantial 
heterogeneity in early experiences. This study is the first to clarify the 
interrelationships among exposures to early adverse in the ABCD Study 
sample, a critical step in delineating how, why, when, and which wide- 
ranging ELAs impact youth development. These findings will directly 
facilitate planned follow-up analyses linking ELA with neuroimaging 
metrics of structural and functional brain development in the ABCD 
Study. Given the breadth of the ABCD Study data, ELA researchers are 
faced with challenging decisions about how to treat these data and 
incorporate them into analyses in a comprehensive yet parsimonious 
way. The results of our analyses suggest 10 different domains of co- 
occurring adversities that may be important to consider within the 

ABCD sample at baseline, and in other community samples. By applying 
the factor scores generated for each of these 10 domains, researchers can 
further delineate the effects of ELA on neurodevelopmental and 
behavioral outcomes of interest, thereby increasing standardization and 
reproducibility of ELA-related research within the ABCD Study. 
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