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Multi-site neuroimaging studies offer an efficient means to study brain functioning in large samples of individuals
with rare conditions; however, they present new challenges given that aggregating data across sites introduces ad-
ditional variability into measures of interest. Assessing the reliability of brain activation across study sites and com-
paring statistical methods for pooling functional data are critical to ensuring the validity of aggregating data across
sites. The current study used two samples of healthy individuals to assess the feasibility and reliability of aggregating
multi-site functional magnetic resonance imaging (fMRI) data from a Sternberg-style verbal workingmemory task.
Participants were recruited as part of the North American Prodrome Longitudinal Study (NAPLS), which comprises
eight fMRI scanning sites across theUnited States andCanada. In thefirst study sample (n=8), oneparticipant from
each home site traveled to each of the sites and was scanned while completing the task on two consecutive days.
Reliability was examined using generalizability theory. Results indicated that blood oxygen level-dependent
(BOLD) signal was reproducible across sites andwas highly reliable, or generalizable, across scanning sites and test-
ing days for core working memory ROIs (generalizability ICCs= 0.81 for left dorsolateral prefrontal cortex, 0.95 for
left superior parietal cortex). In the second study sample (n= 154), two statistical methods for aggregating fMRI
data across sites for all healthy individuals recruited as control participants in the NAPLS study were compared.
Control participants were scanned on one occasion at the site from which they were recruited. Results from the
image-basedmeta-analysis (IBMA)method andmixed effects model with site covariancemethod both showed ro-
bust activation in expected regions (i.e. dorsolateral prefrontal cortex, anterior cingulate cortex, supplementary
motor cortex, superior parietal cortex, inferior temporal cortex, cerebellum, thalamus, basal ganglia). Quantification
of the similarity of groupmaps from thesemethods confirmed a very high (96%) degree of spatial overlap in results.
Thus, brain activation during working memory function was reliable across the NAPLS sites and both the IBMA and
mixed effects model with site covariance methods appear to be valid approaches for aggregating data across sites.
These findings indicate that multi-site functional neuroimaging can offer a reliable means to increase power and
generalizability of results when investigating brain function in rare populations and support the multi-site
investigation of working memory function in the NAPLS study, in particular.
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Introduction
Multi-site functional neuroimaging studies are being increasingly
utilized to study diverse conditions such as attention-deficit hyperactiv-
ity disorder (Colby et al., 2012), chronic (Abbott et al., 2011) and first-
episode schizophrenia (White et al., 2011), pediatric brain cancer
(Mulkern et al., 2008), and Alzheimer's disease (Hua et al., 2013). How-
ever, multi-site investigations present unique challenges given that ag-
gregating data across sites with different scanners and acquisition
protocols introduces additional variability into measures of interest.
Quantifying this variability and comparing it to variability introduced
by other factors such as participant differences and imaging noise are
necessary steps in establishing the reliability ofmulti-site imaging stud-
ies. In addition, examining and comparing statistical methods of aggre-
gating data across sites are critical to ensuring that methods for pooling
data are both valid and maximize the potential gains in power offered
by multi-site studies.

Reliability refers to the consistency of some measurement of individ-
uals overmultiple assessments, assuming that individuals do not undergo
true change between assessments. Several studies have utilized a travel-
ing participant design to examine the reliability of fMRI activation indices
across scanning sites. In this study design, participants travel to each site
of a multi-site study and are scanned while completing the same task.
Blood oxygen level-dependent (BOLD) signal for a task can therefore be
compared across scanners for each participant, and the proportion of var-
iance in activation attributable to site- versus person-related factors can
be estimated. If variance in activation measures were primarily due to
site-related differences rather than person- or task-related differences,
imaging data would be largely scanner dependent and the generalizabil-
ity of data across sites would be questionable (Gradin et al., 2010). Con-
versely, if activation measures showed greater variance due to person
than site factors, this would indicate that person-related effects are likely
to generalize across sites and would support the aggregation of data
across sites. Results from prior studies employing a traveling participant
design found that fMRI activation measures were highly reproducible
across sites for cognitive (Brown et al., 2011, Gradin et al., 2010, Yendiki
et al., 2010), motor (Gountouna et al., 2010), and emotion processing
(Suckling et al., 2007) tasks, even in studies using different scanner
models across sites (Brown et al., 2011; Yendiki et al., 2010). Further,
the proportion of variance in activation measures attributable to
person-related variability was often an order of magnitude larger than
that due to site-related variability, supporting the aggregation of data
across sites. However, given that the proportion of variance attributed
to person- versus site-related factors is not uniform across tasks, regions
of interest, and studies, a thorough examination of these factors for each
task and study is necessary to ensure the validity of pooling data across
sites in any multi-site study (Glover et al., 2012).

Variance component estimates can also be used to compute reliabil-
ity coefficients that provide summary statistics for the consistency of
measurement across multiple assessments. Generally speaking, reliabili-
ty refers to consistency in the ranking of persons on a givenmeasure over
multiple assessments. Reliability coefficients can be calculated to assess
relative or absolute reliability, depending on the nature of the decisions
to be made from the measurements. Relative decisions are based on an
individual's measurement relative the measurements obtained from
others (e.g., norm-referenced interpretations of measurements), where-
as absolute decisions are based on the absolute level of an individual's
measurement independent of the measurements obtained from others
(Shavelson and Webb, 1991). The distinction mainly concerns whether
themain effects of a facet of observation (such as test item,measurement
occasion, or in the current context, MRI scanner) are considered to con-
tribute to measurement error and included in the error term of the reli-
ability coefficient. In the case of relative decisions, they are not included,
whereas they are included in the case of absolute decisions. Measures of
relative reliability include the generalizability coefficient (G-coefficient)
of generalizability theory (Shavelson and Webb, 1991), the intraclass
correlation (ICC; type 3,1) statistic of Shrout and Fleiss (1979), and the
Pearson correlation coefficient. Measures of absolute reliability include
the absolute level ICC (type 2,1) of Shrout and Fleiss (1979) or the
dependability coefficient (D-coefficient) of generalizability theory
(Shavelson and Webb, 1991). In the context of multi-site fMRI studies,
assessing relative agreement across scanning sites may be appropriate
given that in most studies, the absolute value of activation derived
from the contrast is not used for interpretation. Rather, the primary
research question of many fMRI studies involves describing group differ-
ences or describing correlations between task contrasts and other vari-
ables of interest (i.e. relative questions; Barch and Mathalon, 2011).
However, in cases where the absolute value of activation will be utilized
for interpretation or inmulti-site studies inwhich scanning site is not in-
dependent of other factors, assessing the absolute agreement of fMRI
measurement across sites may also be valuable (Brown et al., 2011).
For example, if there are significant differences in the ratio of case versus
control participants across sites in a multi-site study, adjusting for site in
the analysis may not be sufficient to eliminate all site effects. In such cir-
cumstances, assessment of reliability at an absolute level would inform
the extent to which data are interchangeable across sites and thus the
extent to which merging fMRI data across sites is valid (Friedman et al.,
2008). The most appropriate reliability measure therefore depends on
study design and the research question at hand.

The current studywas undertaken to examinemulti-site reliability of
BOLD measures of activation during performance of a Sternberg-style
verbal working memory task and to establish valid statistical methods
for aggregating fMRI data across sites. The results are expected to inform
subsequent multi-site fMRI investigations and, in particular, those con-
ducted as part of the North American Prodrome Longitudinal Study
(NAPLS), a large-scale multi-site study of individuals at clinical high
risk (CHR) for psychosis. NAPLS is a consortium of 8 research centers in
the US and Canada and aims to elucidate predictors and mechanisms of
psychosis onset among CHR individuals. Participants undergo MRI scan-
ning at baseline, 12- and 24-month follow-ups, as well as at conversion
for those who develop fully psychotic symptoms. To examine the reli-
ability of fMRI activation across the 8 scanning sites and to establish
valid statistical methods for aggregating data across sites, data from
two study samples are presented here. In the first study sample, we
used a traveling participant study design and generalizability theory to
characterize the proportion of variation in BOLD signal attributable to
site- versus person-related factors and to assess the reliability of the per-
son effect across testing sites and days at both a relative and an absolute
level. Thus, eight healthy participants traveled to each of the eight sites in
counterbalanced order and were scanned twice at each site while com-
pleting the working memory task on consecutive days. We anticipated
that variance in activation indices due to person-related factors would
be greater than variance due to site-related factors and that the person
effect would be reliable across sites for key working memory regions.
For the second study sample, fMRI data for all healthy individuals who
had been recruited as control participants in the NAPLS study (for com-
parison to the CHR sample) were aggregated across sites using two sta-
tistical methods. In the first aggregation method, group activation
maps were created for each of the eight sites separately and then com-
bined in a hierarchical image-based meta-analysis (Salimi-Khorshidi
et al., 2009). In the second aggregation method, activation maps were
combined for all individuals across sites using a standard general linear
model covarying for site. Similarities and differences in the results of
these two statistical methods for data aggregation were assessed.

Methods

Participants

Participants consisted of two samples of healthy individuals be-
tween the ages of 12 and 33. For the traveling participants study, each
of the sites recruited one healthy participant (4 males, 4 females). Due
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to the travel requirements of the study, only participants over the age of
18 years were recruited. Each participant traveled to each of the eight
sites and was scanned twice on consecutive days for a total of 128
scans (8 participants × 2 scans per site × 8 sites). The sites were
Emory University, Harvard University, University of Calgary, University
of California Los Angeles (UCLA), University of California San Diego
(UCSD), University of North Carolina (UNC), Yale University, and Zucker
Hillside Hospital. All participants completed all scans within a four
month period (May through August of 2011). The order of visits to
sites was counterbalanced across participants.

For the second study sample, 166 healthy individuals (89 males, 77
females) between the ages of 12 and 33 (mean = 20.4, SD = 4.6)
were scanned at the NAPLS site at which they were recruited (as a
healthy control for comparison to CHR individuals).

For both study samples, participants were excluded if they met
DSM-IV criteria for a psychiatric disorder (as assessed with the Struc-
tured Clinical Interview for DSM-IV-TR; First et al., 2002), met prodro-
mal criteria (as assessed by the Structured Interview for Prodromal
Syndromes; McGlashan et al., 2001), met criteria for substance depen-
dence in the past 6 months, had a first-degree relative with a current
or past psychotic disorder, had a neurological disorder, or had a Full
Scale IQ b70 (as measured by the Wechsler Abbreviated Scale of
Intelligence; Wechsler, 1999).

Participants were recruited from the community via advertising and
were compensated for their participation. All participants provided
informed consent or assent for the study. Parental consent was also ob-
tained for minors. The protocol was approved by Institutional Review
Boards at each of the eight study sites.

Task parameters

Working memory was assessed using a Sternberg-style item recog-
nition task (Sternberg, 1966). A target set of yellow uppercase conso-
nants was displayed for 2 s, followed by a fixation cross for 3 s. A
green lowercase probe then appeared for 2 s followed by 2 s of fixation
before the next trial. Participants were instructed to indicate whether
the probe matched any of the letters from the previous target set by
pressing designated buttons. Working memory load was manipulated
by varying the load size of the target set between3, 5, 7 and 9 consonants.
There were 12 trials per load for a total of 48 trials with 50%match trials.
Trials were arranged into blocks of 2 trials from the same load. Six
additional fixation blocks of 18 second duration were interspersed
throughout the task to provide a baseline. Trial randomization was
optimized using OptimizeDesign software (Wager and Nichols, 2003).
Each traveling participant performed the task 16 times (2 visits ×
8 sites); control participants performed the task once. Four parallel
versions of the test stimuli were created and used for both study
samples. For the traveling participants study, test version varied in
counterbalanced fashion such that no participant received the same
version on successive administrations.

Behavioral data analysis

Response accuracy and response time were calculated for each scan
for each participant. Response accuracy was calculated by dividing the
number of correct trials by the total number of trials. Scans on which
participants performed at less than 50% accuracy across the entire task
(i.e. less than 24/48 correct trials) were excluded from further analysis.
For the traveling participant study, if a participant performed at less
than 50% accuracy on one day at a site, data for both days at that site
were excluded from further analyses.

Mixed effects models using SPSS were used to assess potential
effects of site, day at site, and visit order on total response accuracy
and response time for the traveling participants study. Site, day at site,
and visit order were entered as fixed effects. The mixed effect model
was chosen over analysis of variance (ANOVA) to account for excluded
data when a traveling participant performed with less than 50% accura-
cy on a given scan.

For the control study sample, we employed a one-way analysis of
covariance (ANCOVA) to assess potential effects of site on total response
accuracy and mean response time. Sex and age were entered as
covariates.

Data acquisition

Scanning was performed on Siemens Trio 3T scanners at UCLA,
Emory, Harvard, UNC, and Yale, GE 3T HDx scanners at Zucker Hillside
Hospital and UCSD, and a GE 3T Discovery scanner at Calgary. Due to
scanner repairs, one traveling participant received both scans at
Harvard on an alternate scanner and 8 participants from the control
sample (2 at UCLA, 1 at Emory, 2 atHarvard, 1 at UCSD, and 2 at Calgary)
were scanned on alternate scanners. To facilitate reliability analyses,
data from these scanswere excluded from further analyses. All Siemens
sites used a 12-channel head coil and all GE sites used an 8-channel
head coil. Anatomical reference scans were acquired first and used to
configure slice alignment. At all sites scans were acquired in the sagittal
plane with a 1 mm× 1 mm in-plane resolution and 1.2 mm slice thick-
ness. A T2-weighted image (0.9-mm in-plane resolution) was acquired
using a set of high-resolution echo planar (EPI) localizers (Siemens:
TR/TE 6310/67 ms, 30 4-mm slices with 1-mm gap, 220-mm FOV; GE:
TR/TE 6000/120ms, 30 4-mm slices with 1-mm gap, 220-mm FOV).
Functional EPI sequence scans matched the AC-PC aligned T2 image
(TR/TE 2500/30ms, 77 degree flip angle, 30 4-mm slices, 1mm gap,
220-mm FOV). Per Function Biomedical Informatics Research Network
(FBIRN) multi-center EPI sequence standardization recommendations,
both Siemens and General Electric scanners ran EPI sequences with RF
slice excitation pulses that excited both water and fat, with fat suppres-
sion pulses prior to the RF excitation, and comparable reconstruction
image smoothing was implemented between Siemens and GE scanners
(Glover et al., 2012). The experiment was run using E-Prime Software
(Psychology Software Tools), images were displayed using goggles
(Resonance Technologies, Inc), and responses were collected via a
button box. During the scan182 volumeswere acquired, lasting approx-
imately 9 min.

In order to check the quality of data and minimize variability
between sites, a quality assurance protocol was implemented across
sites. Functional data were checked for motion, artifacts, and the quality
of skull stripping implemented in FSL, and data diagnosticswere checked
for each participant. If absolute translocation greater than 3mmoccurred
during 3 or less working memory trials, censor files were created to ex-
clude these trials from analysis. Participants who showed translocation
motion greater than 3 mm maximum absolute displacement during
more than 3 working memory trials were excluded from analyses alto-
gether. This resulted in the exclusion of one participant from the control
study sample; one additional control participant’s functional data was
lost. No traveling participant scans were excluded for excessive motion.

Image processing

Functional image analysis was performed using FSL (FMRIB's Soft-
ware Library v. 4.0; Smith et al., 2004). Motion in EPI datawas corrected
using a six-parameter, rigid-body 3D co-registration (FLIRT),which reg-
istered each BOLD image to themiddle data point in the timeseries. Data
were registered for each participant, first the EPI to the participant's
T2-weighted structural image, then the T2 to standard space brain
(Jenkinson and Smith, 2001; Jenkinson et al., 2002). Data were spatially
smoothed with a 5-mm (FWHM) Gaussian kernel and filtered with a
non-linear high-pass filter (120 s cut-off). Individual participant analy-
ses employed FEAT (FMRI Expert Analysis Tool).

Time series statistical analysis for each participant was carried out
using FILM (FMRIB's Improved LinearModel) with local autocorrelation
correction (Woolrich et al., 2001). Each trial was modeled in its entirety
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in a block design fashion, and correct and incorrect trials for each load
were modeled separately. A univariate general linear model (GLM)
was applied on a voxel-by-voxel basis such that each voxel's timeseries
was individually fitted to the resultingmodel, with local autocorrelation
correction applied within tissue type to improve temporal smoothness
estimation (Smith et al., 2004; Woolrich et al., 2001). Each voxel's
goodness-of-fit to the model was estimated; resulting parameter esti-
mates indicated the degree to which signal change could be explained
by eachmodel.Motion parameters were entered as covariates. Analyses
for the current study used the functional contrast for all trials across
memory loads forwhich a participant gave a correct response compared
to rest. Data on the BOLD response during all correct trials was chosen
for complete presentation here because it was the best summary mea-
sure of working memory functioning.

Regions of interest for traveling participant reliability analysis

Task positive regions of interest (ROI) to be investigatedwere select-
ed to be consistent with prior work (Fiebach et al., 2006; Hashimoto
et al., 2010; Koelsch et al., 2009; Yendiki et al., 2010) and to broadly rep-
resent areas activated by the task in group maps. Anatomically defined
masks for task activated regions were created using the Wakeforest
University (WFU) PickAtlas (Maldjian et al., 2003) for the following
ROIs in the left and right hemispheres:

1) Anterior Cingulate Cortex
2) Dorsolateral Prefrontal Cortex
3) Supplementary Motor Cortex
4) Insula
5) Inferior Temporal Cortex
6) Superior Parietal Cortex
7) Occipital Cortex
8) Thalamus
9) Basal Ganglia

10) Cerebellum

Two additional regions that showed deactivation in groupmaps dur-
ing working memory trials were also investigated. These task negative
ROIs represented areas within the default mode network and typically
show suppression during cognitive tasks (Greicius et al., 2003; Meindl
et al., 2010). Masks were created using the WFU PickAtlas for:

1) Medial Frontal Gyrus
2) Posterior Cingulate Cortex

Anatomical ROIs were combined with functional masks to probe
specific regions of the anatomical structures that were activated or sup-
pressed during theworkingmemory task. Thus, a group activationmap
for all included traveling participant scanswas created from the individ-
ual t-statistic maps using the correct trials versus rest contrast for the
task positive ROIs using FLAME (FMRIB's Local Analysis of Mixed
Effects) (Behrens et al., 2003; Smith et al., 2004), and using the rest ver-
sus correct trials contrast for the task negative ROIs. The GLM included
regressors for site, age, and sex. To correct for multiple comparisons,
the resulting Z-statistic image was thresholded using clusters deter-
mined by Z N 2.3 and a corrected cluster significance threshold of p =
.05 (Forman et al., 1995; Worsley et al., 1992). A convergence analysis
was used to create a mask of the voxels that overlapped between the
functional group map and the anatomical mask for each ROI.

FSL's Featquery was used to warp the functionally masked anatom-
ical ROIs back into each participant's space by applying the inverse of
the transformation matrix used during the initial registration. A quality
assurance procedurewas implemented for travelingparticipant scans at
each site to confirm registration of select functionally masked anatomi-
cal ROIs (i.e. left and right DLPFC, superior parietal cortex, thalamus, and
cerebellum) to individual participant anatomical regions. Visual inspec-
tion confirmed that quality of registration of the group functionally
masked anatomical ROIs to individual participant anatomical regions
was very good in 88.9% of cases, acceptable in 10.9% of cases, and poor
in b1% of cases. The motion-corrected, smoothed, and filtered data
were probed for mean percent signal change during correct trials com-
pared to rest.

Reliability of activation indices in the traveling participants study

Determining reliability using G-theory
Reliability of BOLD signal in each ROI was assessed using the gener-

alizability theory (G-theory) framework. G-theory was developed as an
extension of classical test theory to recognize and model the multiple
sources of measurement error that influence a measure's reliability, or
generalizability, and to allow estimation of reliability with respect to
only those sources of error relevant to the questions at hand (Barch
and Mathalon, 2011). Briefly, reliability assessment using G-theory
includes a generalizability study (G-study) and a decision study
(D-study). The G-study extends earlier analysis of variance approaches
to reliability by partitioning total variance in scores into the variance
components associatedwith: 1) themain effect of person (i.e. the object
ofmeasurement); 2) themain effect of each characteristic feature of the
measurement situation such as test site, test occasion, or test form,
termed “facets” of measurement; and 3) their interactions. The objects
ofmeasurement (i.e. persons) are considered to be sampled from a pop-
ulation and variability among persons is referred to as “universe score
variance.” A “universe of admissible observations” is thus defined by
all possible combinations of all the levels of the facets. G-theory de-
scribes the dependability or reliability of generalizations made from a
person's observed score to the score he or she would obtain in the
broad universe of admissible observations.

G-theory distinguishes between reliability based on the relative
standing of persons versus those based on the absolute value of a
score in the subsequent D-study. For relative decisions, the estimated
components of variance from the G-study are used to compute a gener-
alizability coefficient (G-coefficient) which is the ratio of the universe
score variance to itself plus relative error variance. As such, the
G-coefficient is an intraclass correlation and is analogous to a reliability
coefficient in classical test theory. G-coefficients vary between 0 and 1
and describe the reliability of the rank ordering of individuals. The
error term (σ2

rel) of the G-coefficient, Eρ2, arises from all the nonzero
variance components associated with the rank ordering of individuals.
Thus, variance components associated with the interaction of person
with each facet or combination of facets define the error term. The
G-coefficient is expressed as:

E2ρ ¼ σ2
p

σ2
p þ σ2

rel

� � ;

where σp
2 represents the variance in scores due to person.

For absolute decisions, estimated components of variance from the
G-study are used to compute an index of dependability (D-coefficient).
The error term (σ2

abs) of the D-coefficient (ϕ) arises from all the vari-
ance components associated with the score aside from the component
associated with the object of measurement. The D-coefficient repre-
sents the reliability of 1 observed value within the universe of admissi-
ble observations and similarly varies from 0 to 1. It is expressed as the
following:

ϕ ¼ σ2
p

σ2
p þ σ2

abs

� �

For a more detailed discussion of G-theory see Shavelson andWebb
(1991).
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Statistical analyses
The G-studywas carried out using a two facet Person (8 levels) × Site

(8 levels) × Testing Day (2 levels) crossed design. Person represented
the object of measurement andwas crossed with the site and day facets.
Thus, variance componentswere estimated for themain effects of person
(σp

2), site (σs
2), and day (σd

2); the two-way interactions between person
and site (σps

2 ), person andday (σpd
2 ), and site and day (σsd

2 ); and the resid-
ual due to the person × site × day interaction and random error (σpsd,e

2 ).
The design can be summarized as:

σ2 Xpsd

� �
¼ σ2

p þ σ2
s þ σ2

d þ σ2
ps þ σ2

pd þ σ2
sd þ σ2

psd;e;

where Xpsd represents the observed activation score for a person (p) at a
site (s) on a testing day (d). All facets were specified as random to max-
imize generalizability of results to all conditions of facets, including those
not explicitly included in the current study. The VARCOMP procedure in
SAS with the restricted maximum likelihood (REML) method specified
was used to estimate variance components for the behavioral perfor-
mance indices and for mean percent signal change in each ROI. Any
observations excluded from analyses were treated as missing data by
the VARCOMP procedure; variance components were estimated on
remaining observations.

In addition, to assess for potential outlier sites for fMRI data, we re-
peated the variance component analyses for all ROIs after removing
each of the sites consecutively (Friedman et al., 2008). Thus, we repeat-
ed AVOVA for each ROI eight times, excluding data from one of the eight
sites and including the other 7 sites each time. Mean change in the var-
iance component estimates across ROIs for each series of ANOVAwith a
given site removedwere assessed by comparing the new variance com-
ponent estimates to those obtained when data from all eight sites was
included. A dramatic decrease in variance due to site averaged across
ROIs when a specific site was removed (i.e. a change larger than 3 stan-
dard deviations from the average proportion of variance attributable to
site when all sites were included) would suggest that the site was an
outlier.

In the D-study, we investigated the extent towhich both the relative
ranking of persons and the absolute value of activation for each person
was reliable, or generalizable, across scanning sites and test days. Esti-
mated variance components from the G-study were therefore used to
calculate G-coefficients and D-coefficients that describe the relative
and absolute reliability, respectively, of the person effect for activation
in each ROI across scanning sites and testing occasions. Reliability coef-
ficients were interpreted using Cicchetti and Sparrow's (1981) defini-
tion for judging the clinical significance of ICC values: b0.40 poor;
0.40–0.59 fair; 0.60–0.74 good; N0.74 excellent. G-coefficients were
calculated according to the following equation:

E2ρ ¼ σ2
p

σ2
p þ

σ2
ps

n
0
s

þ σ2
pd

n
0
d

þ σ2
psd:e

n
0
sn

0
d

 !

D-coefficients were calculated according to the following equation:

ϕ ¼ σ2
p

σ2
p þ

σ2
s

n
0
s

þ σ2
d

n
0
d

þ σ2
ps

n
0
s

þ σ2
pd

n
0
d

þ σ2
sd

n
0
sn

0
d

þ σ2
psd:e

n
0
sn

0
d

 !

Aggregation of multi-site data in the healthy control participants study

Hierarchical model for image-based meta-analysis
The image-based meta-analysis (IMBA) approach was selected

based on prior research comparing strategies for pooling fMRI data
across studies (Salimi-Khorshidi et al., 2009). For each individual site,
a mixed effects group-level analysis was carried out using FLAME
(FMRIB's Local Analysis of Mixed Effects) (Behrens et al., 2003; Smith
et al., 2004) with each participant's data, including parameter and vari-
ance estimates from the lower-level analysis. This inter-participant
analysis for each site constituted the second level of fMRI analysis
(following the first-level intra-participantmodeling of each participant's
fMRI time series data). Covariates for age and sex were included in the
GLM for each site. To correct for multiple comparisons, resulting
Z-statistic images were thresholded using clusters determined by
Z N 2.3 and a corrected cluster significance threshold of p = .05
(Forman et al., 1995; Worsley et al., 1992). Cluster p-values were deter-
mined using spatial smoothness estimation in FEAT (Forman et al., 1995;
Jenkinson and Smith, 2001). The resulting statistical data, which include
the combination of each participant's effect estimates and standard er-
rors to give amean group effect size estimate andmixed effects variance
for each of the 8 sites, were input into a third-level analysis constituting
the image-based meta-analysis. Thus, the inter-site meta-analysis was
conducted using the hierarchical model for image-based meta-analysis
specified by Salimi-Khorshidi et al. (2009). The site-level effect sizes
and variances were modeled to provide fixed effects inference using a
fixed effects group level analysis in FLAME. TheGLM included a regressor
to estimate the mean effect across sites.

Model with covariance for site for second study
As an alternative to the IMBA approach, we examined a covariance

model that could be used in contexts where a particular effect size is
not estimable at one or more sites. For the mixed effects model with
site as a covariate, group analysis was carried out using FLAME (FMRIB's
Local Analysis ofMixed Effects) (Behrens et al., 2003; Smith et al., 2004)
with each participant's data, including parameter and variance esti-
mates from the lower-level analysis. The GLM for each contrast of inter-
est included regressors for site, age, and sex. As in the IBMAmethod, all
Z-statistic images were thresholded using clusters determined by
Z N 2.3 and a corrected cluster significance threshold of p = .05.

Comparison of IBMA to mixed effects covariance analyses

Convergence of the IMBA and site covariance models was examined
using the Dice Similarity Measure (DSM), a symmetric measure of the
resemblance of two binary images (Bennett and Miller, 2010). The
DSM coefficient ranges from 0 (indicating no overlap) to 1 (indicating
perfect overlap). Z-statistic activation maps from the IMBA and covari-
ance models were first combined to create a map of the union of over-
lapping voxel-wise activation for the group maps. Next, a count of the
number of non-zero voxels was extracted from each of the z-statistic
maps for the IMBA, covariance model, and union map, using fslmaths.
The DSM coefficient was then calculated using the following equation:

2� jA∩Bjð Þ= Aj j þ Bj jð Þ

where A represents the z-statistic activation map from the IBMA and B
represents the z-statistic activation map from the site covariance
analysis.

In addition, to explore how adjusting the cluster threshold parame-
ters affected convergence of the IMBA and site covariance models, each
model was re-run using clusters determined by Z N 1.5 and Z N 3.0 and a
corrected cluster significance threshold of p= .05. Spatial overlap in the
resulting z-statistic images were again compared using the DSM.

Results

Demographic characteristics and behavioral performance in the traveling
participant and control participant samples

One traveling participant performed at less than 50% accuracy dur-
ing one or both scans at 5 different sites; behavioral and fMRI data
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from both visits to each of these sites were excluded from further anal-
ysis. Given the exclusion of one additional traveling participant's scans
at Harvard due to scanner repairs, this resulted in a total of 116 scans in-
cluded for analysis in the traveling participant sample. In the control
study sample, two participants performed at less than 50% accuracy
andwere excluded from further analysis. The demographic characteris-
tics and behavioral performance for included scans byworkingmemory
load are shown in Table 1 for the traveling participant and control par-
ticipant samples. Mean accuracy across working memory loads was
high for both traveling participants (M = 88.3, SD = 7.1) and control
participants (M = 83.1, SD = 8.2), with response accuracy decreasing
at higher memory loads.

For the travelingparticipants study, participants (n=8)visited each
of the eight sites in counterbalanced order. Mean percent correct re-
sponses and response time for each participant in the temporal order
that sites were visited, averaged across the two scans at each site, are
shown in Figs. 1 and 2, respectively. Overall, results suggest no learning
effects across scans. For percent correct responses, there was no signif-
icant effect of site, F(1,107.29) = 2.18, p = .14, day at site, F(1,107.23) =
1.51, p = .22, or visit order, F(1,107.29) = 0.07, p= .79. Similarly, for re-
sponse time, therewas no significant effect of site F(1,107.15)= 2.83, p=
.10, day at site, F(1,107.12) = 3.36, p = .07, or visit order, F(1,107.47) =
0.20, p = .66. Thus, learning effects are not expected to confound
analysis of the traveling participant fMRI data.

In the control participant sample (n= 154), ANCOVA showed a sig-
nificant effect of site for overall response accuracy F(1,144) = 2.34, p =
.03, and mean response time, F(1,144) = 2.92, p= .007, after controlling
for the effects of age and sex. Follow-up post-hoc tests of Least Signifi-
cant Differences indicated that participants at site 1 (UCLA), 2
(Emory), 4 (Zucker Hillside), 5 (UNC) and 7 (Calgary) had significantly
higher response accuracy than participants at site 6 (UCSD), ps b .05,
participants at site 5 had significantly higher response accuracy than
participants at site 8 (Yale), participants at site 4 had significantly faster
response times than participants at sites 2, 3 (Harvard), 6 and 8, and
participants at sites 1,4 and 5 had significantly faster response times
than participants at site 6, p b .05.

Traveling participants fMRI data and variance components analysis

To illustrate variation in fMRI activation across sites and participants,
Fig. 3 shows plots of mean percent signal change across 4 example ROIs
(anterior cingulate cortex, dorsolateral prefrontal cortex, supplementa-
ry motor cortex, and superior parietal cortex) averaged across the trav-
eling participants for each of the 8 sites for the left (A) and right (B)
hemispheres, and averaged across the sites for each of the 8 participants
for the left (C) and right (D) hemispheres. Overall, within each ROI,
activation varied more between participants when averaged across
sites, than between sites when averaged across participants.

Variance components analysis was used to determine the propor-
tion of variance attributable to the main effects of person, site, and
day; the interactions of person × site, person × day, and site × day;
and the residual due to the person × site × day interaction and random
error for the behavioral performance indices, for activation in task pos-
itive ROIs, and for deactivation in task negative ROIs. Variance compo-
nents results for response accuracy and response time are shown in
Fig. 4. Variance components for task positive ROIs in the left and right
hemisphere for the correct trials versus rest contrast and for task nega-
tive ROIs for the rest versus correct trials contrast are shown in Table 2;
the proportion of total variance attributed to each component is shown
in Fig. 5. Among individual ROIs, the proportion of variance in activation
attributed to personwas 10-fold larger than that attributed to site in ten
out of twenty-two ROIs, and 20-fold larger than site in five ROIs, includ-
ing in left DLPFC, left and right superior parietal cortex, left inferior tem-
poral cortex, and right supplementary motor cortex. The residual
variance termwhich includes variance due to the three-way interaction
of person, site, and day was the largest variance component in twenty
out of twenty-two ROIs. Mean proportion of variance attributed to
each component averaged across task positive ROIs in the left hemi-
sphere, task positive ROIs in the right hemisphere, and task negative
ROIs is shown in Table 3. The proportion of variance attributed to person
was larger for left hemisphere task positive ROIs and task negative ROIs
compared to right hemisphere task positive ROIs. Averaged across all
twenty-two ROIs, the proportion of variance attributed to person was
8-fold larger than that attributed to site, 20-fold larger than that attrib-
uted to day, and 5-fold larger than that attributed to the person x site
interaction.

Following Friedman et al. (2008) we repeated the variance compo-
nent analyses for all ROIs after removing each of the sites consecutively
to assess for potential outlier sites. Thus, ANOVA for each ROI was re-
peated eight times; each analysis excluding data from one of the eight
sites and including the other seven sites. Table 4 shows the change in
percentage of variance attributed to site when each site was excluded
averaged across the twenty-two ROIs. All changes in the average vari-
ance attributed to site were less than 1 standard deviation from the
average variance attributed to site when all sites were included; thus,
no sites appeared to be outliers.

Variance component estimates were subsequently used to calculate
G-coefficients andD-coefficients for each ROI, reflecting the relative and
absolute agreement of the person effect across scanning sites and days,
respectively (Table 5). G-coefficients showed excellent reliability in the
majority of ROIs. Thus, the reliability of the ranking of persons on activa-
tion in task positive ROIs ranged from Eρ

2 = 0 for the left insula and
right DLPFC to Eρ

2 = 0.95 for the left superior parietal cortex.
D-coefficients for task positive ROIs were lower than G-coefficients,
but remained in the good to excellent range for themajority of ROIs. Re-
liability coefficients were highest for regionsmost frequently associated
with verbal working memory, indicating that relative and absolute
agreement of the person effect on activation was reliable, or generaliz-
able, in the current study design across scanning sites and days for
core verbal working memory regions. G-coefficients and D-coefficients
similarly showed excellent reliability across the task-negative ROIs.
This indicates that task-related deactivation of default mode regions
was also reliable across scanning sites and days.

Aggregation of Multi-site activation data: IBMA and mixed effects model
with site covariance

Results from the hierarchical IBMA model and the mixed effects
model with covariance for site both showed robust activation in expect-
ed regions for correct working memory trials compared to rest (Fig. 6).
Thus, in both methods, control participants showed robust activation
across numerous cortical regions including bilateral superior parietal
cortex, dorsolateral prefrontal cortex, lateral occipital cortex, inferior
temporal cortex, insular cortex, cingulate gyrus, and supplementary
motor cortex. Participants also showed activation of subcortical struc-
tures including bilateral cerebellum, caudate, putamen, and thalamus
in both methods. Results from the DSM analysis which quantified the
voxelwise overlap between the thresholded images for each approach
showed a high degree of overlap in spatial localization of activation be-
tween the approaches. The DSM coefficient for the comparison of the
hierarchical image-based meta-analysis model and the mixed effects
model with covariance for site was .96 when activation maps were
thresholded using clusters determined by Z N 2.3. Convergence of the
z-statistic activation maps when the IBMA and mixed effects models
were re-run using clusters determined by Z N 1.5 and Z N 3.0 was simi-
larly high, yielding DSM coefficients of .96 and .95, respectively. Given
that theDSMcoefficient can range from 0 to 1.0,with 1.0 indicating per-
fect similarity between two sets, this demonstrates a high degree of
similarity in results from the two methods of multi-site data aggrega-
tion and also suggests that convergence of the two methods of data
aggregation was robust to changes in thresholding parameters in the
current sample.



Table 1
Demographic and behavioral performance data for traveling participants, control participants, and control participants by site.

Traveling
participants

Control
participants

Control site 1 Control site 2 Control site 3 Control site 4 Control site 5 Control site 6 Control site 7 Control site 8

Demographic
Characteristics
N 8a 154b 20 23 22 25 25 9 13 17
Mean age (SD) 26.9 (4.3) 20.5 (4.5) 18.8 (3.4) 22.0 (4.9) 20.1 (4.5) 17.4 (2.5) 20.4 (3.0) 21.1 (4.7) 23.9 (5.9) 22.4 (4.7)
Age range 20–31 12–33 13–26 13–31 14–31 12–23 14–25 14–29 15–33 14–30
Sex 4F/4M 69F/85M 7F/13M 8F/15M 11F/11M 12F/13M 11F/14M 2F/7M 7F/6M 11F/6M

Behavioral data
Load 3 % correct (SD) 95.9 (7.7) 93.2 (9.2) 91.7 (9.0) 92.4 (10.6) 92.8 (10.4) 93.0 (9.8) 95.0 (7.2) 91.7 (13.2) 96.2 (5.5) 93.1 (8.5)
Load 5 % correct (SD) 92.4 (9.2) 89.2 (10.0) 90.4 (10.6) 88.0 (9.7) 88.3 (12.0) 91.3 (9.2) 91.0 (8.7) 84.3 (8.8) 91.7 (6.8) 85.3 (12.0)
Load 7 % correct (SD) 88.4 (9.1) 81.3 (13.6) 84.6 (13.0) 82.6 (13.3) 78.8 (13.5) 79.3 (16.5) 86.0 (11.0) 74.1 (11.4) 85.3 (11.4) 75.5 (13.7)
Load 9 % correct (SD) 76.6 (13.4) 68.8 (13.8) 68.3 (12.8) 69.9 (15.4) 68.6 (16.9) 65.3 (9.5) 74.7 (13.5) 57.4 (9.7) 73.1 (16.0) 67.7 (10.2)
Response time load 3
correct ms (SD)

977.0
(159.9)

1084.9
(232.3)

1053.1
(196.9)

1197.0
(342.9)

1121.8
(180.2)

997.5
(210.7)

1040.0
(233.8)

1250.9
(163.8)

1041.6
(190.5)

1062.6
(151.2)

Response time load 5
correct ms (SD)

1023.1
(227.2)

1145.5
(288.2)

1092.5
(309.2)

1256.9
(366.4)

1189.4
(227.2)

1016.2
(210.2)

1099.4
(313.8)

1365.0
(263.7)

1092.4
(189.2)

1182.6
(262.0)

Response time load 7
correct ms (SD)

1068.0
(210.6)

1284.0
(395.4)

1187.4
(388.4)

1372.9
(507.1)

1357.7
(356.8)

1232.7
(435.0)

1170.0
(346.1)

1573.1
(387.3)

1179.1
(180.3)

1352.3
(341.3)

Response time load 9
correct ms (SD)

1265.1
(330.4)

1534.1
(527.1)

1460.5
(397.3)

1689.7
(842.0)

1625.5
(609.3)

1435.6
(327.9)

1367.2
(411.1)

2022.6
(383.8)

1430.1
(394.7)

1503.2
(382.2)

a 1 traveling participant data excluded at 5 sites due to scans onone or both occasions at b50% accuracy, 1 traveling participant data excluded at 1 site due to receiving scans on alternate
scanners.

b 12 participants excluded from original control sample (n = 166): 1 due to excessive motion, 8 due to receiving scans on alternate scanners, 2 due to performance b50% accuracy; 1
due to lost functional data.
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Discussion

The current study examined the reliability of brain activation during
a Sternberg-style working memory task across the eight NAPLS sites
and compared two statistical methods for aggregating data across
sites. In the traveling participant component of the study, eight partici-
pants traveled to each NAPLS site and were scanned while completing
the task on two consecutive days. Participants showed no learning ef-
fects, as indicated by no effects of order of site visit or day of scanning
on response accuracy or response time. Overall, fMRI activation was
observed to be highly reliable across sites. Activation levels in task-
relevant ROIswere similar across sites, person-related factors accounted
for eight times more variance in activation than site-related factors
when averaged across ROIs, and no site appeared to be an outlier. In ad-
dition, reliability coefficients indicated excellent generalizability of the
person effect across sites and testing days for core working memory
ROIs and for deactivation in default mode regions. In the control partic-
ipant component of the study, fMRI data for all healthy individuals who
had been recruited as control participants in the NAPLS study were ag-
gregated across sites using two statistical methods; group maps gener-
ated by eachmethodwere compared. In both the hierarchical IBMA and
mixed effects model with site covariance methods, control participants
Fig. 1. Traveling participant total percent correct responses by site, in the order that sites
were visited. Each marker corresponds to a different participant.
showed robust activation across cortical and subcortical regions previ-
ously implicated in working memory function. Quantification of the
similarity of group maps from these two statistical methods of data ag-
gregation using the DSM coefficient confirmed a very high degree of
spatial overlap in results (96%). Thus, brain activation and deactivation
during the working memory task appeared reliable across the NAPLS
sites, and both the IBMA and mixed effects model with site covariance
methods may be valid statistical methods for aggregating data across
sites.

We used generalizability theory to examine the contributions of per-
son and multiple sources of measurement error to fMRI signal, and to
assess the relative and absolute generalizability of the person effect
across scanning sites and testing days. Consistent with prior studies ex-
amining variance components of the BOLD response (Brown et al.,
2011; Costafreda, 2009; Gountouna et al., 2010; Yendiki et al., 2010),
we found that variance in BOLD signal due to site was low across ROIs,
and that variance due to person was at least 10-fold larger in many
ROIs, including left dorsolateral prefrontal cortex, bilateral superior pa-
rietal cortex, inferior temporal cortex, and supplementarymotor cortex.
Averaged across ROIs, the interaction of person by site contributed a
small proportion of the total variance in BOLD signal (3.6%). Variance
due to the interaction of person by site could arise from differences in
Fig. 2. Traveling participantmean response times (ms) by site, in the order that sites were
visited. Each marker corresponds to a different participant.

image of Fig.�2


Fig. 4. Proportion of variance attributable to each variance component for response accu-
racy and response time for traveling participants.

48 J.K. Forsyth et al. / NeuroImage 97 (2014) 41–52
the rank ordering of subjects across sites and/or from differences in the
distance of the BOLD response of subjects across sites. When the inter-
action of person by site is large relative to the effect of person, the
rank ordering of personsmay vary across sitewith greater potential im-
pact on between-site reliability. In the current study, variance due to
person was larger than the person by site interaction for twenty one
out of twenty-two ROIs and the person by site interaction term
was zero in the majority of ROIs. Using the guidelines for judging
the significance of ICC values defined by Cicchetti and Sparrow
(1981), G-coefficients were in the excellent range for eleven out of
twenty task positive ROIs andwere highest in ROIsmost strongly linked
to working memory function. Reliability coefficients for regions show-
ing deactivation during working memory trials (i.e. medial frontal
gyrus and posterior cingulate cortex) were also in the excellent range.
Of the ten ROIs for which the person by site interaction contributed
any variance to BOLD signal variance, G-coefficients were in the excel-
lent range for all but one. Overall, this indicates high reliability of the
person effect across primary working memory ROIs and suggests that
site-related effects and the person by site interaction hadminimal effect
on reliability. D-coefficients were similarly in the excellent range for
nine task positive ROIs and both task negative ROIs. Parallel exploratory
analyses usingmaximum signal change as the parameter of interest re-
vealed a similar pattern of results for the all correct versus rest contrast
(results not shown). However, it is also of note that four ROIs showed
poor reliability coefficients with neither site- nor person-related factors
contributing substantially to variance in activation (i.e. left insula, left
basal ganglia, right DLPFC, right cerebellum). This is consistent with
prior research showing that reliability is frequently lower in regions
that are less robustly activated by a task (Bennett and Miller, 2010;
Brown et al., 2011; Caceres et al., 2009) and may reflect the fact that
Fig. 3. Traveling participantmean percent signal change± standard error in dorsolateral prefro
plementary motor cortex (SM) averaged across participants for each site for the left (A) and ri
(D) hemisphere. For subplots A and B, each bar within a given ROI corresponds to a different s
participant.
when a region is minimally involved in a task, there is relatively little
signal compared to noise leading to low reliability. Alternatively, this
could reflect a poor fit of the design model to the acquired time series
for some ROIs (Caceres et al., 2009). We also carried out parallel vari-
ance component analyses using a higher control condition contrast
(see Supplementary Methods and Results for details). Thus, we ex-
plored the reliability of activation in task positive ROIs and deactivation
in task negative ROIs during load 9 trials compared to load 3 trials. Av-
eraged across ROIs, variance due to person was lower using the higher
control condition contrast compared to the all correct trials versus rest
contrast. However, site contributed little or no variance to BOLD signal
in the majority of ROIs using the higher control contrast, and thus, the
proportion of variance due to person was substantially larger in the
ntal cortex (DLPFC), anterior cingulate cortex (ACC), superior parietal cortex (SP), and sup-
ght (B) hemisphere and averaged across sites for each participant in the left (C) and right
ite. For subplots C and D, each bar within a given ROI corresponds to a different traveling
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Table 2
Variance components for traveling participant activation in left and right hemisphere anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), supplementarymotor cortex
(SM), insula (IN), inferior temporal cortex (IT), superior parietal cortex (SP), occipital cortex (OCC), thalamus (T), basal ganglia (BG), and cerebellum (C), and for deactivation in medial
frontal gyrus (MFG) and posterior cingulate cortex (PCC).

ACC DLPFC SM IN IT SP OCC T BG C MFG PCC

Left hemisphere Task negative regions
Person 0.0053 0.0741 0.0363 0 0.4274 0.3268 0.0560 0.0054 0.0011 0.0020 Person 0.0241 0.0524
Site 0.0030 0 0.0033 0 0 0.0132 0.0063 0.0008 0.0002 0.0025 Site 0.0096 0.0081
Day 0.0009 0.0007 0.0006 0 0 0.0011 0.0052 0 0.0009 0 Day 0.0016 0
Person × site 0 0.0543 0.0032 0 0.1001 0.0203 0.0070 0.0022 0 0 Person × site 0 0.0257
Person × day 0 0 0.0006 0.0006 0 0 0 0 0.0005 0 Person × day 0 0.0099
Site × day 0 0.0376 0 0.0025 0 0 0 0.0001 0 0.0001 Site × day 0 0
Residual 0.0228 0.1629 0.0913 0.0355 0.3579 0.2167 0.1411 0.0379 0.0233 0.0472 Residual 0.0842 0.0950

Right hemisphere
Person 0.0095 0 0.0259 0.0089 0.2179 0.0872 0.0160 0.0071 0.0030 0.0014
Site 0 0.0028 0.0005 0 0.0197 0 0.0034 0 0.0007 0.0022
Day 0.0006 0 0.0025 0 0.0133 0 0.0099 0 0.0001 0.0003
Person × site 0 0 0 0 0 0.0350 0.0267 0 0 0
Person × day 0.0000 0.0540 0 0 0 0.0077 0.0105 0 0 0
Site × day 0.0023 0 0 0.0048 0 0 0 0.0033 0 0
Residual 0.0388 0.2188 0.1016 0.0440 0.4836 0.1086 0.2164 0.0424 0.0344 0.0458

Table 3
Percentage of variance attributed to person, site, and day; the interactions for
person × site, person × day, and site × day; and residual error averaged across task-
positive regions in the left and right hemispheres for the correct trials versus rest contrast,
and averaged across task-negative regions for the rest versus correct trials contrast.

Mean proportion of variance

Left hemisphere Right hemisphere Task negative regions

Person 21.62% 14.98% 23.80%
Site 2.44% 1.15% 6.16%
Day 0.94% 0.93% 0.66%
Person × site 4.17% 2.41% 6.73%
Person × day 0.41% 2.66% 2.58%
Site × day 1.82% 1.92% 0.00%
Residual 68.59% 75.96% 60.07%
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majority of ROIs. Reliability coefficients remained in the good to excel-
lent range for core working memory ROIs. The majority of prior studies
investigating reliability inmulti-site fMRI studies have investigated reli-
ability across only a few scanning sites (Brown et al., 2011; Gountouna
et al., 2010; Gradin et al., 2010; Yendiki et al., 2010), although Zou et al.
(2005) also investigated reliability across a larger number of sites. Al-
though the extent of reliability depended on the specific brain region in-
vestigated, these results confirm that larger multi-site fMRI
investigations are feasible and indicate thatwhen appropriate standard-
ization procedures are implemented across sites, brain activation
among participants can be highly reliable across sites for core verbal
working memory ROIs.

Examining and comparing methods for aggregating data are
important steps to ensure that statistical approaches utilized are
both valid andmaximize gains in power offered bymulti-site investiga-
tions. Salimi-Khorshidi et al. (2009) compared image-based versus
coordinate-based methods for aggregating fMRI data across sites/
studies. Results demonstrated a clear advantage for the IBMA method
versus coordinate-based aggregation methods for minimizing informa-
tion loss while accounting for differences between sites/studies. Howev-
er, in some scenarios, it may not be possible to conduct a hierarchical
analysis of group maps generated for each site. For example, if one site
of a multi-site study contributes control participants but few or no pa-
tient participants, a case–control contrast at that sitemaynot be possible.
Employing a mixed effects model with site covariance would allow data
Fig. 5. Proportion of variance attributable to each variance component for activation in left and
supplementary motor cortex (SM), insula (IN), inferior temporal cortex (IT), superior parietal c
the correct trials versus rest contrast, and for deactivation in medial frontal gyrus (MFG) and p
from such a site to be aggregated without requiring an underpowered
case–control contrast. Using the control participant sample, we com-
pared results from an IBMA versus a mixed effects model with site co-
variance for the Sternberg-style working memory task. Results were
highly similar across the twomethods of data aggregation, and quantifi-
cation of the similarity of group maps using the DSM coefficient con-
firmed very high spatial overlap in results. Thus, in both methods,
control participants showed robust activation in numerous cortical and
subcortical regions including bilateral dorsolateral prefrontal cortex, in-
ferior temporal cortex, insula, anterior cingulate cortex, supplementary
right hemisphere anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC),
ortex (SP), occipital cortex (OCC), thalamus (T), basal ganglia (BG), and cerebellum (C) for
osterior cingulate cortex (PCC) for the rest versus correct trials contrast.
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Table 4
Change in the percentage of variance attributed to site, averaged across all ROIs, when
each site is excluded from analysis.

Excluded site Change in variance attributed to site

Site 1 −0.20%
Site 2 0.47%
Site 3 0.00%
Site 4 0.46%
Site 5 0.05%
Site 6 −0.69%
Site 7 0.49%
Site 8 −0.20%

Table 5
G-coefficients andD-coefficients for the person effect in left and right hemisphere anterior
cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), supplementarymotor cor-
tex (SM), insula (IN), inferior temporal cortex (IT), superior parietal cortex (SP), occipital
cortex (OCC), thalamus (T), basal ganglia (BG), and cerebellum (C) for the correct trials
versus rest contrast, and for medial frontal gyrus (MFG) and posterior cingulate cortex
(PCC) for the rest versus correct trials contrast.

G-coefficient D-coefficient

Task positive regions Left Right Left Right
ACC 0.79 0.80 0.70 0.77
DLPFC 0.81 0.00 0.79 0.00
SM 0.85 0.80 0.84 0.77
IN 0.00 0.76 0.00 0.74
IT 0.92 0.88 0.92 0.85
SP 0.95 0.85 0.95 0.85
OCC 0.85 0.42 0.81 0.37
T 0.67 0.73 0.66 0.71
BG 0.39 0.58 0.33 0.57
C 0.40 0.33 0.38 0.30

Task negative regions
MFG 0.82 0.77
PCC 0.79 0.78
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motor cortex, superior parietal cortex, cerebellum, thalamus, and
basal ganglia. In addition, adjusting the cluster correction threshold
parameters did not significantly alter spatial convergence of the
two methods. This provides further support for the strength of con-
vergence of these methods for the current task and sample. Prior
fMRI studies have found that verbal working memory tasks activate
a distributed network in the brain including frontal speech regions,
Fig. 6. Functional activation groupmaps for control participants for all correct trials versus rest u
effects model with site covariance method (cluster peak Z score range: 13.6–19.1).
dorsolateral prefrontal cortex, posterior parietal cortex, anterior
cingulate cortex, inferior temporal cortex, and subcortical structures
including the thalamus, basal ganglia, and cerebellum (Fiebach et al.,
2006; Hashimoto et al., 2010; Koelsch et al., 2009; Voytek and
Knight, 2010). Given that the IBMA and mixed effects model pro-
duced similar results for the current task, this suggests that either
model would provide a valid method for aggregating data across
the NAPLS sites.

There are some limitations to the current study that should be noted.
First, although variance in BOLD signal attributable to person-related
factors was much higher than that attributable to site-related factors,
unexplained variancewas high formany ROIs. Cognitive tasks frequent-
ly show lower signal reliability relative to motor and sensory tasks
(Bennett and Miller, 2010) and participant characteristics may contrib-
ute to large unexplained variances. For example, differences in arousal
and attention associated with variation in brain activation change not
only between scanning sessions but also during the course of one scan-
ning session. Evolving changes in cognitive strategies are also common
and can contribute to higher residual variance in cognitive tasks.
Although high unexplained variance is a concern of fMRI studies gener-
ally, results from the current and prior studies suggest that results from
standard cognitive tasks are often similar across scanners and can nev-
ertheless yield important insights into differences in brain activation be-
tween control and patient groups. A second limitation is that the current
study was not exhaustive in quantifying reliability or comparing ap-
proaches for aggregating data across sites. Prior studies examining
these questions have examined reliability for various activation indices
(e.g. ROI activation versus voxel-wise activation versus whole brain
activation) and have used diverse statistical methods to quantify reli-
ability (Bennett andMiller, 2010). Given that several multi-site investi-
gations have already compared many of these approaches, methods for
the current investigation were selected to capture activation indices
thatwere likely to be used in subsequent investigations, to be consistent
with prior studies of similar tasks to facilitate comparison (e.g. Yendiki
et al., 2010) and to reflect the study questions at hand (Barch and
Mathalon, 2011). Finally, the sample size of the traveling participant
component of the study was relatively small and demographic variance
between traveling participantsmay have been low relative to the gener-
al population. Given the number of sites in the NAPLS consortium, the
feasibility of having a larger number of participants travel to each site
was limited. Nevertheless, over sampling of similar individuals can
sing image-basedmeta-analysismethod (cluster peak Z score range: 19.7–21.8) andmixed
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lead to underestimates of the reliability coefficients, given the essential
role of variance in determining reliability.

Conclusions

In summary, the current study demonstrated the feasibility and
validity of utilizing a multi-site study to examine brain activation asso-
ciated with a Sternberg-style working memory task. In the traveling
participant study, variance in BOLD signal attributable to person was
8-fold larger than that due to site-related factors averaged across
twenty-two ROIs, and the effect of person was generalizable across
study sites and testing days for the majority of ROIs. Results from the
control participant study of individuals recruited as control participants
in the NAPLS study demonstrated that both the hierarchical IBMA and
mixed effects model with site covariance may be valid methods for ag-
gregating fMRI data across sites. These findings are encouraging for the
continued use of multi-site fMRI investigations to study rare clinical
populations, and support themulti-site investigation of brain activation
during working memory function for CHR individuals in the NAPLS
study, in particular.
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