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Early caregiving experiences play a central role in shaping

corticolimbic development and emotional learning and

regulation. Given dynamic changes in corticolimbic maturation,

the effects of caregiving experiences are likely to depend on the

developmental timing of exposure. Cross-species evidence

has identified timing-related differences in the effects of

caregiving adversity. However, the extent to which

developmental differences in associations between caregiving

adversity and corticolimbic circuitry align with a sensitive

period model has remained unclear. Converging evidence from

studies of caregiver deprivation points to a sensitive period for

caregiving influences on corticolimbic circuitry and emotional

development during infancy. By contrast, differential

associations between maltreatment and corticolimbic circuitry

at specific ages in childhood and adolescence may reflect

experience-dependent mechanisms of plasticity. Delineating

sensitive periods of development and the precise experience-

related mechanisms by which caregiving experiences influence

corticolimbic development is essential for refining conceptual

models and understanding risk and resilience following early

adversity.

Address

Yale University, Department of Psychology, 2 Hillhouse Avenue,

New Haven, CT 06511, United States

Corresponding author: Gee, Dylan G (dylan.gee@yale.edu)

Current Opinion in Behavioral Sciences 2020, 36:177–184

This review comes from a themed issue on Sensitive and critical

periods

Edited by Catherine A Hartley and Willem E Frankenhuis

For a complete overview see the Issue and the Editorial

Available online 3rd December 2020

https://doi.org/10.1016/j.cobeha.2020.11.003

2352-1546/ã 2020 Elsevier Ltd. All rights reserved.

Early experiences have profound and lasting effects on

the developing brain and emotional behavior. Caregiving

is one of the strongest species-expected inputs for altricial

species early in life, and stable caregiving is critical to

emotional well-being [1]. From normative variation in

caregiving behaviors to severe caregiving adversity, the

early environment actively shapes learning and behav-

ioral repertoires in the affective domain for years to come.
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A rich cross-species literature has begun to identify

the effects of caregiving experiences on corticolimbic

circuitry and emotional behavior. Given marked changes

in species-expected inputs and neuroplasticity across

development, caregiving experiences are likely to differ-

entially shape behavior during infancy, childhood, and

adolescence [2–4]. However, much remains unknown

about precise experience-related mechanisms and

whether developmental differences in the effects of

caregiving experiences reflect sensitive periods [5].

Identifying specific timing-related effects of caregiving

experiences and differentiating between experience-

expectant and experience-dependent mechanisms is

key to advancing conceptual models of caregiving envir-

onments and corticolimbic development.

Sensitive periods of development
During a sensitive period of heightened neuroplasticity, a

specific environmental input has a particularly strong

influence on a specific brain circuit, and plasticity is

limited following this window [6,7]. Importantly, sensi-

tive periods are characterized by experience-expectant

learning and are thought to reflect neural preparation to

encode species-expected environmental stimuli [8].

Recent years have witnessed transformative discoveries

of the molecular triggers (e.g., excitatory-inhibitory bal-

ance) and brakes (e.g., perineuronal nets, myelin) that

control the onset and closure of sensitive periods, as

well as the insight that sensitive period processes are

themselves malleable [7]. Unlike experience-expectant

plasticity, which tends to occur early in development,

experience-dependent plasticity occurs in response

to individual experiences (which are not necessarily

species-expected) and facilitates learning throughout

development [8]. The current review aims to apply a

critical lens to existing research on caregiving effects on

corticolimbic development to begin to delineate which

developmental differences in caregiving influences may

align with a sensitive period model and experience-

expectant versus experience-dependent plasticity.

Caregiving and corticolimbic development
Decades of research have demonstrated the robust links

between caregiving and offspring emotional behavior [9],

with a growing literature focused on neurobiological

mechanisms. Cross-species evidence has demonstrated

that early caregiving experiences have particularly

strong effects on corticolimbic circuity involved in learn-

ing about salient aspects of the environment and

regulating emotion. Connections between regions such
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178 Sensitive and critical periods
as the medial prefrontal cortex (mPFC), amygdala, and

hippocampus, which play a key role in regulating emotion

and guiding biologically relevant learning [10], may be

especially impacted by adversity due to their dense

innervation with glucocorticoid receptors and the devel-

opmental timing of circuit maturation [11]. Whereas

prefrontal regions and their connections with limbic

structures undergo protracted development, the amyg-

dala matures relatively earlier and may be particularly

sensitive to the early social environment [12]. Though

these connections undergo marked changes across devel-

opment [13,14], functional connectivity at rest is already

evident between the amygdala and regions such as ven-

tromedial prefrontal cortex (vmPFC) in infancy [15].

Moreover, amygdala-mPFC functional connectivity at

rest among newborns is associated with negative affect

at six months of age [16] and with behavioral inhibition

at two years of age [17]. Environmental influences on

corticolimbic circuitry in early life may play an active role

in shaping longer-term neural and behavioral phenotypes.

For example, neural co-activations induced via experi-

ences with caregivers may ‘entrain’ the system during a

highly plastic time in ways that shape intrinsic cortico-

limbic architecture and affective behaviors [18–20].

Moreover, the early sensitivity of the amygdala to envi-

ronmental inputs may directly guide mPFC function

and connectivity [20] and influence later-developing

aspects of broader cortico-subcortical circuitry through

developmental cascades [21].

Much of the research linking caregiving with emotional

development comes from studies of severe caregiving

adversity. Alterations of the HPA axis [22] and cortico-

limbic circuitry [23,24] appear to underlie effects of

caregiving adversity on emotional learning [25] and regu-

lation [26] and likely contribute to increased risk for

mental health disorders. However, increasingly evidence

has also emerged linking normative variation in caregiv-

ing behavior with corticolimbic structure and function

[27]. For example, during childhood, caregiver sensitivity

is associated with amygdala volume and microstructure

of the amygdala and hippocampus [28], and negative

caregiving behavior is associated with amygdala activa-

tion and functional connectivity between the amygdala

and superior parietal lobule [29]. In addition, caregiver

control experienced during childhood is associated with

amygdala activation and structural integrity of the

uncinate fasciculus during young adulthood [30]. These

studies further underscore the importance of caregiving in

healthy brain development.

Developmental differences in the effects of
caregiving on corticolimbic circuitry
Non-human animal work that allows for manipulating the

timing of exposure shows that the effects of stress differ as

a function of developmental timing [3]. Manipulating

stress exposure is challenging in humans; however,
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naturalistic human studies of unfortunate events (e.g.,

institutionalized care) provide strong evidence for the

importance of the timing of adversity. With its unique

study design, the Bucharest Early Intervention Project

has highlighted a potential sensitive period related to

socioemotional development during the first two years

of life. That is, youth who were exposed to caregiver

deprivation via institutionalized care show more secure

attachment, more normative stress responses, and more

normative neurodevelopmental trajectories following

placement into a foster care intervention prior to

24 months of age, relative to peers who were placed later

[31]. These findings highlight infancy as a particularly

important time for caregiving influences, as well as the

potential for the identification of sensitive periods to

inform interventions.

Consistent evidence has shown that the absence of stable,

nurturing caregiving in the postnatal and infancy period

disrupts corticolimbic development. Across species, early

caregiver deprivation is associated with altered connec-

tivity between the amygdala and mPFC in mice [32], rats

[33], non-human primates [23], and humans [24]. It is

possible that these findings reflect a sensitive period

driven by experience-expectant mechanisms. Consistent

with criteria for a sensitive period [7,34], infancy is a time

of rapid and marked change in corticolimbic circuitry [35],

and it is biologically plausible that this period is charac-

terized by heightened neuroplasticity. There is also some

specificity to the nature of the experience, the neural

circuit affected, and the timing of the window during

which caregiver deprivation has particularly strong effects

[3]. However, evaluating sensitive period phenomena

in human development is especially challenging, and

additional research will be necessary to more rigorously

assess all relevant criteria [5,34]. In particular, it is rare

that longitudinal data are available to test whether effects

of caregiver deprivation on corticolimbic circuitry persist

into adulthood.

Although substantial evidence suggests that caregiving

adversity has the strongest effects when experienced

earlier in life [3,22,31], an alternative account suggests

that risk may be highest when adversity occurs during

specific windows that could occur later in childhood or

adolescence. Studies examining variation in the timing of

maltreatment have at times pointed to specific ages of

exposure during childhood or adolescence at which

effects on corticolimbic structure or function in adulthood

are pronounced [36–38,39�]. These studies highlight

the complexity of interactions between developmental

timing with the type of adversity exposure, sex, and

regional specificity in the brain. For example, exposure

to maltreatment between ages 10 and 11 is specifically

related to amygdala volume in adulthood, relative to

exposure at other ages during development [37], whereas

sexual abuse at ages 3–5 and 11–13 is uniquely associated
www.sciencedirect.com
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with hippocampal volume in adulthood [36]. Among men,

hippocampal volume in adulthood is associated with

neglect, but not abuse, prior to age 7. By contrast, hippo-

campal volume in women is associated with abuse, but

not neglect, at ages 10–11 and 15–16 years [38]. However,

it is not clear whether these developmental differences

align with a sensitive period process, and experience-

dependent mechanisms may better explain such age-

related effects. As one example, maltreatment is unlikely

to be a plausible type of species-expected stimuli at a

specific developmental time [5]. Moreover, while these

findings in adulthood may suggest non-linear peaks in risk

throughout development, future studies during childhood

and adolescence will be important for understanding

more proximal corticolimbic changes that may unfold

across development.

Yet another way in which caregiving adversity may alter

corticolimbic development is by altering sensitive period

processes themselves. In rodents, hippocampal and amyg-

dala development, as well as some forms of emotional

learning, are accelerated following early adversity

[40–42]. In humans, evidence suggests that the timing

of structural and functional corticolimbic development

may also be accelerated following adversity [24,43,44]. As

one example, while viewing fearful faces, children who

experienced caregiver deprivation exhibit more mature

patterns of functional connectivity between the vmPFC

and amygdala (i.e., negative task-based connectivity),

which resemble those of adolescents and adults [24].

Across species these effects have been mediated by

corticosterone levels (cortisol in humans) [24], suggesting

that early caregiving adversity may prematurely stimulate

the HPA axis in a way that contributes to precocious

corticolimbic and emotional development.

Such accelerated development may represent an ontoge-

netic adaptation in the context of an early harsh environ-

ment [45,46]. Consistent with this idea, children exposed

to caregiver deprivation who show the more mature

phenotype of vmPFC-amygdala connectivity also display

lower separation anxiety [24]. These findings are in line

with evidence that stronger inverse amygdala-mPFC

functional connectivity is associated with lower internal-

izing symptoms among youth exposed to early family

adversity [47] and that greater prefrontal control (specifi-

cally, superior frontal gyrus and dorsal anterior cingulate

cortex) of amygdala reactivity during emotion regulation

is associated with lower depressive symptoms following

child maltreatment [48]. Moreover, recent work shows

that the more mature pattern of vmPFC-amygdala

connectivity is also associated with slower telomere short-

ening and pubertal tempo [49�], which may further

suggest protective effects in the context of evidence

demonstrating accelerated cellular aging following early

life adversity. However, there are likely to be long-term

consequences of accelerated development. Such
www.sciencedirect.com 
precocious maturation may signal a shift or premature

termination of a sensitive period of caregiving influences,

which could be associated with reduced plasticity. Future

research will be important for understanding longer-term

effects, testing whether neural findings are specific to

corticolimbic circuitry, and for further examining how

developmental patterns of acceleration converge or

diverge across different domains such as puberty, cellular

aging, and neurodevelopment.

Early caregiving influences on emotional
learning and regulation
Caregivers modulate offspring behavior in a number of

domains related to affective behavior, including influenc-

ing what offspring learn and how they perceive the world

around them. Encoding stable, reliable caregiver cues

that are associated with safety during an early sensitive

period (e.g., infancy) may be essential to the roles that

caregivers play in modulating emotional learning and

regulation later in development. Young offspring show

a preference for cues related to their caregiver, even when

those cues are inherently aversive. For example, rodent

pups show approach behaviors toward an odor paired with

a shock during a period when maternal presence main-

tains low levels of corticosterone and blocks amygdala

plasticity [50]. Paralleling these findings in rodents,

recent evidence demonstrates similar caregiver-related

learning in humans. Specifically, young children were

more likely to approach conditioned stimuli that were

acquired in their caregiver’s presence and to avoid stimuli

acquired in the caregiver’s absence [51�]. This attraction

to caregiver-related cues and absence of avoidance learn-

ing is thought to facilitate attachment early in life and

ensure that the offspring stays close to their caregiver [52].

Critically, these effects depend on developmental stage.

During a window from postnatal day (P)10 to P15, rodent

pup behavior depends on maternal presence, such

that pups continue to show approach behaviors if the

mother is present. However, corticosterone and amygdala

activation increase if the mother is absent, instantiating

threat learning and avoidance behaviors [50], potentially

to facilitate survival when offspring engage in exploration

independently.

Consistent with the effects of caregiver presence on

corticosterone levels and amygdala plasticity in rodents,

caregivers buffer stress physiology and HPA axis reactiv-

ity in infant macaques [53] and in humans [54]. Suggest-

ing a potentially related mechanism by which caregivers

modulate affective behavior early in life, during child-

hood, caregivers suppress amygdala reactivity and phasi-

cally induce a pattern of amygdala-mPFC functional

connectivity that may be more strongly regulatory [55].

Paralleling this modulation of amygdala-mPFC circuitry,

children also show enhanced regulatory behavior in

an affective context in the presence of their mother

compared with a stranger. The effects of caregivers on
Current Opinion in Behavioral Sciences 2020, 36:177–184
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cortisol reactivity [54] as well as on regulatory behavior

and amygdala-mPFC circuitry [55] are specific to child-

hood, and not adolescence. These findings suggest that

caregivers may serve an external regulatory function

while corticolimbic circuitry is still developing. With time

and as this circuitry matures, reliance on external regula-

tion may decrease as regulatory abilities become inter-

nalized to facilitate independent emotion regulation, and

other major attachment figures such as close peers or

romantic partners may take on an increasing role in social

buffering [46,56] (Figure 1). In humans, caregiver pres-

ence has also been shown to increase discrimination

between threat and safety cues during childhood, but

not adolescence [57]. In these ways, caregivers play a

central role in shaping what children learn about their
Figure 1
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environment and in regulating their behavior, particularly

early in life. However, instead of caregiver effects on

emotional learning and regulation during childhood

reflecting a sensitive period itself, it may be that encoding

reliable cues related to the support of caregivers earlier in

life allows for those cues to exert these unique effects

during childhood.

Consistent with this idea, increasing cross-species evi-

dence suggests that early caregiving adversity disrupts the

ways in which caregivers guide learning and buffer

emotional reactivity in later stages of development. In

rodents, infant maltreatment is associated with reduced

effects of maternal presence on threat learning during

infancy [58,59�]. Interestingly, maltreatment during
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infancy has differential effects on maternal buffering

during infancy versus adolescence. Whereas maltreat-

ment completely disrupts maternal buffering at PN18,

maternal buffering is present but weaker at PN28 [59�]. In

non-human primates, infant maltreatment is associated

with weaker maternal buffering of stress-induced cortisol

increases [60]. In humans, caregiver deprivation early in

life interferes with caregiver buffering of amygdala reac-

tivity during childhood [61��]. However, effects are het-

erogeneous, such that approximately 40% of youth who

experienced caregiver deprivation exhibit caregiver buff-

ering, and those youth also experience steeper declines in

separation anxiety over a period of three years. Thus, the

ability to experience caregiver buffering of amygdala

reactivity may enhance resilience within this group at

elevated risk for anxiety. Taken together, these findings

suggest that while caregiver buffering itself may not be

consistent with a sensitive period phenomenon, caregiv-

ing adversity during a sensitive period in infancy may

disrupt the encoding of stable, safe caregiver cues that

are likely to be important for caregiver influences on

emotional learning and regulation later in development.

Future directions
Despite a growing literature on developmental differ-

ences in the effects of caregiving on corticolimbic devel-

opment, the experience-related mechanisms underlying

these influences remain largely unknown. Ongoing

research that evaluates which developmental differences

are consistent with the criteria for a sensitive period

will be essential to advancing conceptual models and

understanding the mechanisms by which early caregiving

experiences become biologically embedded to shape

emotional development. It is rare that distinct models

of experience-related mechanisms have been directly

compared, and rigorously testing a sensitive period model

in humans presents various challenges [5,62], including

the complex and multifaceted nature of caregiving

experiences, the protracted time needed to assess effects

on mature function, and the inability to test for molecular

regulators and direct markers of plasticity in humans.

In addition, it is important to acknowledge that experi-

ence-expectant and experience-dependent learning are

unlikely to be completely independent processes [8], and

experience-related learning is unlikely to reflect a single

process or model. In this regard, cross-species research

will continue to be essential to testing hypotheses about

sensitive periods [63], and bridging between formal

modeling and empirical studies may offer powerful

insights [62]. Further, study designs will need to

incorporate precise measurement of timing of exposures

and extend longitudinal follow-up to enhance the

ability to test sensitive period models in human

neurodevelopment.

Lastly, research on developmental differences in caregiv-

ing effects has largely focused on timing-related factors in
www.sciencedirect.com 
isolation. An important area for future research will be

examining how timing-related factors (e.g., age of expo-

sure, chronicity, duration) interact with key experiential

dimensions of adversity, such as the extent to which

adversity is characterized by threat versus deprivation

[64], predictability [65], controllability, and/or caregiver

involvement [for review, see Ref. 66��]. As one example,

independent of severity, adversity perpetrated by a care-

giver or adversity that involves dyadic caregiver/child

exposure may have stronger or differential effects on

corticolimbic development than adversity that does not

involve a caregiver [67]. Further delineating how specific

features of adversity differentially impact outcomes, and

how those effects differ by developmental stage, could

inform efforts to optimize risk identification based on

developmental stage or the nature of adversity exposure.

Conclusions
Cross-species findings demonstrate that early caregiving

experiences play a central role in shaping the develop-

ment of learning and regulation in the affective domain.

Adverse caregiving can alter corticolimbic development

and normative processes such as caregiver buffering

of amygdala reactivity, with lasting implications for

emotional behavior and mental health. While increasing

evidence demonstrates that caregiving influences depend

on the timing of experiences, it is unclear under what

circumstances earlier adversity is more consequential or

whether there are windows of development throughout

childhood and adolescence when caregiving adversity has

the strongest effects. Moreover, much remains unknown

about the experience-related mechanisms of plasticity

that link early caregiving inputs with affective outcomes.

Caregiver deprivation experienced during infancy has

persistent effects on corticolimbic development and later

caregiver buffering, which may reflect an early sensitive

period for attachment and learning stable caregiver cues.

Future research will be essential for testing whether

developmental differences in caregiving influences may

reflect experience-expectant or experience-dependent

mechanisms, or influences on sensitive period timing

itself. Refining conceptual models based on such knowl-

edge has important implications for promoting resilience

following early adversity and could be leveraged to

enhance risk identification or tailor interventions based

on factors such as developmental stage.
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