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Resting-state functional connectivity (FC) fMRI (rs-fcMRI) offers an appealing approach to mapping the brain's
intrinsic functional organization. Blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) are the
twomain rs-fcMRI approaches to assess alterations in brain networks associated with individual differences, be-
havior and psychopathology. While the BOLD signal is stronger with a higher temporal resolution, ASL provides
quantitative, direct measures of the physiology and metabolism of specific networks. This study systematically
investigated the similarity and reliability of resting brain networks (RBNs) in BOLD and ASL. A 2 × 2 × 2 factorial
designwas employedwhere each subject underwent repeated BOLD and ASL rs-fcMRI scans on two occasions on
twoMRI scanners respectively. Both independent and joint FC analyses revealed common RBNs in ASL and BOLD
rs-fcMRIwith amoderate to high level of spatial overlap, verified byDice Similarity Coefficients. Test–retest anal-
yses indicatedmore reliable spatial network patterns in BOLD (averagemodal Intraclass Correlation Coefficients:
0.905 ± 0.033 between-sessions; 0.885 ± 0.052 between-scanners) than ASL (0.545 ± 0.048; 0.575 ± 0.059).
Nevertheless, ASL provided highly reproducible (0.955 ± 0.021; 0.970 ± 0.011) network-specific CBF mea-
surements. Moreover, we observed positive correlations between regional CBF and FC in core areas of all RBNs
indicating a relationship between network connectivity and its baseline metabolism. Taken together, the combi-
nation of ASL and BOLD rs-fcMRI provides a powerful tool for characterizing the spatiotemporal and quantitative
properties of RBNs. These findings pave the way for future BOLD and ASL rs-fcMRI studies in clinical populations
that are carried out across time and scanners.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Since the seminal work by Biswal et al. in 1995 (Biswal et al., 1995),
the study of resting brain networks (RBN) based on functional connec-
tivity (FC) in resting state fMRI (rs-fcMRI) has experienced an upsurge
from basic to clinical neuroscience. The majority of rs-fcMRI studies
have used blood oxygen level dependent (BOLD) contrast due to its
technical simplicity, high sensitivity and temporal resolution. Recently,
a growing number of rs-fcMRI studies have employed arterial spin la-
beled (ASL) perfusion MRI (Chuang et al., 2008; Dai et al., 2013; Jann
et al., 2013; Liang et al., 2011, 2012; Zou et al., 2009), which measures
cerebral blood flow (CBF) using magnetically labeled arterial blood
MRI Technology, Ahmanson-
gy, University of California Los
os Angeles, USA. Fax: +1 310
water as an endogenous tracer (Detre et al., 1992). Compared to
BOLD, perfusion-based FC analysis provides more direct and quantita-
tive measures of the physiology and metabolism of specific networks
(Buxton et al., 2004). The inherently quantitative nature of ASL
allows for the assignment of biologically meaningful values to the net-
works, thus may complement BOLD by providing a more interpretable
biomarker.

To date, however, the application of perfusion-based rs-fcMRI
in clinical neuroscience has been hampered by the relatively low sensi-
tivity and temporal resolution of ASL compared to BOLD. The recent
development of pseudo-continuous ASL (pCASL) with background sup-
pressed (BS) 3D acquisitions (e.g. GRASE— a hybrid of spin and gradient
echo and Stack-of-Spirals) has dramatically improved the sensitivity
and temporal SNR of perfusion imaging series (Alsop et al., 2014;
Fernandez-Seara et al., 2008), allowing the detection of CBF based
RBNs while minimizing potential BOLD contaminations (Du et al.,
2012; Liang et al., 2012). Another appealing feature of perfusion based
rs-fMRI using pCASL with 3D BS GRASE or Stack-of-Spirals is the
improved visualization of RBNs involving brain regions affected by
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susceptibility artifacts at the tissue–air interfaces (Fernandez-Seara
et al., 2005).

Given the complementary nature of BOLD and perfusion rs-fcMRI —
higher sampling rate/temporal resolution in BOLD and absolute CBF
quantification in ASL, the combination of the two contrasts may offer a
powerful tool for rs-fcMRI studies to fully characterize the spatiotempo-
ral and quantitative properties of RBNs. The primary purpose of this
studywas to present a framework for independent and joint FC analyses
of BOLD and perfusion based rs-fcMRI data to identify common and
modality specific RBNs, using rigorous statistical approaches. For future
applications of BOLD and perfusion-based functional connectivity anal-
yses in clinical studies, it is critical to establish the reliability of RBNs
across time (Meindl et al., 2010; Shehzad et al., 2009; Zuo et al.,
2010), scanner platforms (Van Dijk et al., 2010) and modalities as well
as their dependencies on imaging parameters (Birn et al., 2013; Patriat
et al., 2013; Van Dijk et al., 2010). For this purpose, a 2 × 2 × 2 factorial
design was employed in the present study using repeated BOLD and
ASL rs-fcMRI scans on two occasions on two MRI scanners respectively.
We hypothesized that BOLD and ASL rs-fcMRI should show common
RBNs that are reproducible across time and scanners. The overall FC in
BOLD RBNs is stronger than that of ASL RBNs, yet ASL networks show
higher FC in specific brain regions (e.g. orbitofrontal cortex). Finally,
network specific quantitative CBF measured by ASL may indicate the
baseline metabolic activity and may be associated with (or underlie)
the strength of functional connectivity of the corresponding network
(Aslan et al., 2011; Liang et al., 2013; Tomasi et al., 2013).
Materials and methods

Participants and data acquisition

Ten healthy volunteers (6f/4m; Age [mean ± std] = 22 ± 3 years)
underwent repeatedMRI scans on two 3T Siemens TIM TrioMR systems
using the standard 12-channel head coils and identical pulse sequences.
A 2 × 2 × 2 factorial design was employed, i.e., 2 repeated scans on 2
scanners using 2 modalities (ASL and BOLD). On the first day they par-
ticipated in two sessions approximately one hour apart on one of the
two scanners, and on the second day (2.1± 1.3 days apart) the protocol
was repeated on the other scanner (scanner orderwas counterbalanced
across participants). Each session included resting state (rs-) BOLD im-
aging with 2D EPI readout and the following parameters: Volumes =
240, Matrix = 64 × 64, Slice Thickness = 4 mm with 1 mm gap, 30
slices, Repetition Time/Echo Time (TR/TE) = 2000/30 ms, Flip
Angle = 77°, Pixel Bandwidth = 2298 Hz, Field of View = 220 mm;
resting state pseudo-continuous ASL (rs-pCASL) with single-shot 3D
background suppressed GRASE readout and the following parameters:
Volumes = 120 (60 label/control pairs), Matrix = 64 × 64, Slice Thick-
ness = 5 mm, 26 slices, Repetition Time/Echo Time/Label Time/Post
Label Delay (TR/TE/τ/PLD) = 4000/22/1200/1000 ms, Pixel Band-
width = 2003 Hz, Field of View = 220 mm, labeling offset = 9 cm,
and 2 global inversion pulses were applied during the PLD for back-
ground suppression (the first BS pulse was applied immediately after
the labeling pulses, the second BS pulse 700ms after the labeling pulses.
Overall these two BS pulses achieved ~85% suppression for gray and
white matter signals. The residual image intensity was necessary
for motion correction as well as to avoid zero crossing signals for sub-
traction between label and control images) (Kilroy et al., 2013; St
Lawrence et al., 2012). For CBF quantification an additional volume
(M0, equilibrium magnetization image) with the same parameters as
described for pCASL but with a long PLD of 4000 ms and without BS
was acquired. Finally, a T1 weighted, high resolution, anatomical scan
was performed (MP-RAGE, 192 sagittal slices with 1 mm isotropic
voxels, TR/TE/TI = 2170/4.33/1100 ms). Resting state was defined as
lying still with eyes open while fixating a white cross at the center of a
dark screen.
Data processing

Analysis of theMRI datawasperformedusing SPM8 (http://www.fil.
ion.ucl.ac.uk/spm/) and in-houseMatlab (TheMathWorks, Natick, USA)
routines. Statistical analyses were performed using Matlab Statistics
Toolbox, R Programming Project (http://www.r-project.org/) and IBM
SPSS Statistics (Version 19).

CBF quantification

Raw pCASL GRASE images were motion corrected separately
for control and label images (Wang et al., 2008) before perfusion-
weighted time series were created by sinc-subtraction of label and
control images (ΔM). Notably, sinc-subtraction has been demonstrated
to efficiently minimize spurious BOLD contaminations within the ASL
signal (Aguirre et al., 2002; Chuang et al., 2008; Liu and Wong, 2005).
The computation of the quantitative CBF signal was based on a single
compartment kinetic model (Chen et al., 2011; Wang et al., 2003,
2005). After quantification, the CBF imageswere co-registered to the in-
dividuals' anatomical scans, normalized into MNI standard space
(thereby resampled into 2 × 2 × 2 mm voxel resolution) and spatially
smoothedwith an8mmfull-width at halfmaximum(FWHM)Gaussian
Kernel.

BOLD images were first slice-time andmotion corrected followed by
coregistration, normalization and spatial smoothing identical to the CBF
images. Anatomical images were normalized into standard MNI space
and segmented into gray matter, white matter and cerebrospinal fluid
(GM/WM/CSF) using the algorithms provided by SPM8. The individual
GM images were averaged and thresholded at 0.3, providing a binary
mask representing gray matter voxels only (GM mask).

Network decomposition using ICA

Networks were identified by means of the Group ICA of fMRI Tool-
box (GIFT) using a concatenated group level ICA approach (Calhoun
et al., 2001, 2004).

First, separate group ICAs for BOLD and ASL data were performed.
The individual time series were zero-meaned and the GM mask was
applied for the ICA infomax algorithm (Bell and Sejnowski, 1995). The
ICA model order was estimated using the AIC/MDL criterion, which
yielded an optimal number of components for each individual dataset
with a median of 36 for BOLD and 20 components for ASL datasets.
Group- and subject-specific maps (as back — reconstructed by the
GICA procedure) were stored as z-maps. RBNs were identified by
means of conjoint template correlation (GIFT) and visual inspection of
the component maps according to the spatial distribution given in the
literature (Beckmann et al., 2005; Franco et al., 2009).

Since different ICAmodel orders can lead to unequal decompositions
thus splitting components into subnetworks or merging of networks
(Abou-Elseoud et al., 2010; Calhoun et al., 2009),matching and ordering
of components across ICA runs are not a straightforward procedure
from a mathematical point of view. To address this issue on drawing
inferences about, and comparisons between subject cohorts, group ap-
proaches and joint ICA approaches have been suggested (Calhoun
et al., 2001, 2009), which perform the unmixing on the temporally
concatenated dataset. These approaches assure that subject or modality
specific components are based on the same group component hence
enabling comparative statistics for BOLD and ASL derived networks
without bias of separate decompositions. Accordingly, we employed
a joint-ICA where the BOLD and CBF datasets were assigned to 8
(i.e., 2 × 2 × 2) sessions per subject and temporally concatenated. The
same ICA parameters were used for this approach with subsequent
back-reconstruction for sessions and modalities. The MDL criterion for
the joint dataset yielded a median of 16 components for the aggregated
group dataset.
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We computed t-maps to display the separate BOLD and ASL RBNs in
joint and separate ICA. Specifically in the joint ICA the group component
is the same for ASL and BOLD as it is computed across all datasets.
The back-regressed individual subject and session IC-maps were then
used to generate modality specific ASL and BOLD RBNs using one-
sample t-tests against zero (significance set at p b 0.001). While the t-
maps were used for displaying the networks, the z-scores representing
the ICA group components were used to generate RBN-masks that were
used in the analyses below.

Statistics

Spatial similarity and overlap of BOLD and ASL based RBNs were
assessed by Dice Similarity Coefficients (DSC), while test–retest repeat-
ability of ASL and BOLD based RBNs was estimated using Intraclass
Correlation Coefficients (ICCs). Statistical analyses were performed on
the network as well as on a voxel-wise level. Repeated-measures
ANOVAs and post-hoc t-tests were computed to identify differences be-
tween modalities, scanners and sessions, as well as possible interaction
effects. A schematic overview of analyses is given in Fig. 1.

Statistical maps were corrected for multiple comparisons (type I
errors) using AlphaSim (Ward, 2000). This procedure estimates the dis-
tribution of random cluster sizes given a statistical map and threshold
taking into consideration the spatial smoothness of the data (Bennett
et al., 2009; Forman et al., 1995). Accordingly, it provides the minimal
cluster size required for clusters to be at a level above random clustering
at a chosen correction level.We performed 1000 iterations and selected
the correction level at alpha b 0.05.

○ Dice Similarity Coefficients (DSC) of RBNs
To quantify the degree of similarity and spatial overlap of RBNs, we
computed the Dice's Similarity Coefficient (DSC) (Dice, 1945; Zhu
et al., 2013) according to the formula:

DSC ¼ 2 A∩Bj j
Aþ Bj j ð1Þ
Fig. 1. Schematic workflow of ICA of BOLD and ASL data. ICA decompositions were performed s
Brain Networks (RBNs). Dice Similarity Coefficients (DSC) were calculated to compare spatial ov
sion and scanner was estimated by means of Intra-class correlation coefficients (ICC). An ANO
Finally, baseline activity of RBNs (RBNCBF) was calculated and associations between RBNCBF an
where, A and B represent sets of voxels within two given RBNs
(thresholded at z N 2) and the parallel brackets denote the number
of voxels in the set within the brackets.

○ Network based CBF
Meannetwork perfusionwas defined as the spatially and temporally
averaged CBF values across all voxels within the group RBN map
where z N 2, here dubbed as RBNCBF. The resulting four RBNCBF met-
rics (one for each of the four ASL scans) per subject were subjected
to a 2 × 2 repeated measures ANOVA with within-subject factors
of site (1; 2) and session (1; 2) to test for the consistency of CBF
quantification for each network respectively.

○ Network Amplitudes of Low Frequency Fluctuations (ALFF)
In addition to RBN-CBF we also computed the Amplitudes of Low
Frequency Fluctuations (ALFF) (Zang et al., 2007), which provides a
measure of regional spontaneous activity fluctuations. Using dynam-
ic CBF to compute ALFFs instead of relative BOLD signal fluctuations,
the ALFFs have a direct physiologicalmeaning and a quantitative unit
(i.e. ml/100 g/min). Accordingly we computed the CBF-ALFF for each
session in each subject respectively, and extracted the corresponding
mean ALFF in each network. ALFF differences across networks and
subjects were then tested using an ANOVA. Additionally, we normal-
ized the ALFF values with regard to subjects' specific RBN-CBF (ad-
justed for global GM-CBF) providing a %ALFF for each subject with
respect to their baseline RBN-CBF values (Chuang et al., 2008).
These %ALFF measurements were also subjected to an ANOVA.

● Intraclass Correlation Coefficient (ICCs)

○ Voxel wise maps for FC and regional CBF.

The ICC estimation was based on a repeated-measure mixed effects
ANOVA model with absolute agreement of values (A-k) (Landis and
Koch, 1977; McGraw and Wong, 1996; Shrout and Fleiss, 1979). The
ICC measures the proportion of total variance that is accounted for by
the variation between subjects against the variance associated with ei-
ther between-site or within-site effects. Hence, ICC over 0.5 indicates
eparately for BOLD and ASL datasets as well as in a combined joint-ICA to compute Resting
erlap of resulting RBNs across different ICA runs. Test–retest reliability of RBNs across ses-
VA with post-hoc t-test was employed to statistically compare RBNs from BOLD and ASL.
d functional connectivity strength were tested by Pearson correlation coefficients.
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that scanner or session variation is lower than between-subjects vari-
ance. ICC was calculated by

ICC ¼ MSw−MSe
MSwþ MSb−MSeð Þ=n ð2Þ

where MSw and MSb are the within- and between-subject errors re-
spectively, MSe is the mean residual error and n is the sample size.

Voxel-wise maps of ICC for either FC or CBF were computed for
within-site (averaging z-/CBF-maps across sites) and between-site
(averaging z-/CBF-maps across sessions) variance. Further, to facilitate
interpretation, we calculated a single ICC value for each network
(using only voxels within a given RBN where z N 2) by taking the
mode of the ICC value distribution histogram between 0 and 1 (Zuo
et al., 2010). The mode of a histogram distribution represents the most
prevalent value in the distribution. Besides the modal-ICC we also com-
puted the percentage of voxels with ICC N 0.6 within each RBN as com-
pared the total number of voxels within this RBN (threshold z N 2).

● ANOVA
○ Voxel-wise maps for FC.

As separate ICAs can result in unequal decompositions of networks
as outlined in Materials and methods, the statistical comparison of
Fig. 2. Results from separate ICAs for BOLD and ASL. Modality specific group RBNs were comput
RBN results while right column those for ASL. Five common RBNs were analyzed: Default Mod
Network (OVN) and Auditory Network (AUN). Test–retest reliability between sessions and s
networks (ICC maps were masked by ICA group RBN maps thresholded at z N 2). Differences b
sided t-tests (significance thresholdwas set at p b 0.001). The bottom rowdisplays voxel-wise c
networks (only significant (p b 0.05) correlations above r N 0.4 are displayed. Correlation map
analyses can be found in Supplemental Figs. S1–S5.
RBNs was performed using single-subject maps resulting from the
joint ICA. This assured that different model orders, component un-
mixing, network splitting/merging or component matching across ICA
runs does not bias possible network differences.

We performed voxel-wise 2 × 2 × 2 repeated measures ANOVAs
on the single subject z-maps with within-subject factors of modal-
ity (BOLD; CBF), site (1,2) and session (1,2) for each RBN. Statis-
tical thresholds for main and interaction effects were set at p b 0.01
(F (1,9) = 10.56). Maps with significant effects were further subjected
to two-sample two-sided post-hoc t-tests (significance level p b 0.001).

• Correlation between RBNCBF and network z-scores

To assess the potential relationships between individual network
connectivity and baseline network perfusion, we computed the voxel-
wise Pearson correlation between the RBN z-scores and the respective
regional (voxel-level) CBF from the same scan session. In addition, we
compared the network connectivities between the two modalities by
correlating the average z-scores of all joint BOLD-RBNs (10 subjects
across 4 sessions) to those of the corresponding ASL-RBNs. Using ICA
as compared to Seed BasedApproaches (SBA)where a direct correlation
between any two specified brain areas is computed and considered as
FC strength, the FC strength used here (ICA z-scores) represents the
degree to which a given voxel is integrated within a given network
ed as one-sample t-test across the specific single subject maps. Left column displays BOLD
e Network (DMN), left and right Executive Control Networks (L/R-ECNs), Occipital Visual
canners are displayed as Intraclass Correlation Coefficient (ICC) maps for BOLD and ASL
etween the two modalities (BOLD vs. ASL) were assessed by means of two-sample two-
orrelationmaps for CBF and Functional Connectivity strength (z-scores) for thefive distinct
s have been masked by ICA group RBNmaps thresholded at z N 2). Multi-slice views of all
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component, i.e. its relative connectivity strength to all other voxels
in the specific network. To provide an estimate of how prevalent an
CBF-FC relation is within each RBN, we also computed the percentage
of voxels with significant correlations above r N 0.4 within each RBN
as compared to the total number of voxels within this RBN (threshold
z N 2).

Results

Common RBNs in BOLD and ASL rs-fMRI

The three different ICA decompositions (i.e., ASL-only, BOLD-only
and joint ASL/BOLD) revealed five common RBNs: the Default Mode
Network (DMN, correlation of ICA group component to template net-
works for: BOLD-only ICA R = 0.37, ASL only ICA R = 0.37, joint ICA
R = 0.28), the two lateralized Executive Control Networks (ECNs)
(RECN; RBOLD = 0.36, RASL = 0.22, Rjoint = 0.28/LECN; RBOLD = 0.33,
RASL = 0.24, Rjoint = 0.24) the Occipital Visual Network (OVN;
RBOLD = 0.34, RASL = 0.28, Rjoint = 0.35) and the Auditory Network
(AUN; RBOLD=0.32, Rjoint= 0.18). The spatial pattern of the 5 networks
is depicted in Fig. 2 for separate ICAs and Fig. 3 for joint ICA (multi-slice
Fig. 3. Results from joint-ICAs for BOLD and ASL (Display, organization and color-scaling are ana
specific single subject maps. Left column displays BOLD RBN results while right column those fo
Executive Control Networks (L/R-ECNs), Occipital Visual Network (OVN) andAuditoryNetwork
Coefficient (ICC) maps for BOLD and ASL networks (ICC maps were masked by ICA group RBN
assessed bymeans of two-sample two-sided t-tests (significance thresholdwas set at p b 0.001)
strength (z-scores) for the five distinct networks (only significant (p b 0.05) correlations ab
thresholded at z N 2). Multi-slice views of all analyses can be found in Supplemental Figs. S1–S
views of RBNs displayed in Fig. S1) respectively. The results consistently
showed similar RBNs in each modality and assessment of spatial simi-
larity using DSC demonstrated a moderate to high level of overlap for
all RBNs across ICA runs (Table 1, Fig. S6).

Between BOLD-only and ASL-only RBNs, the left and right ECN
(DSC = 0.42/0.56) and the DMN (0.35) showed a moderate to high
level of overlap, whereas theOVNand AUNappeared as a single compo-
nent in ASL-only ICA and a direct quantitative comparison was thus
inappropriate (Fig. 3). Comparing the RBNs detected by separate ICA
to the joint-ICA networks revealed a high level of agreement between
BOLD-only and joint RBNs (average DSC across networks [mean ±
SD] = 0.58 ± 0.05), while for ASL-only ICA the two ECNs reached the
same high degree of similarity (R/L-ECN = 0.65/0.60) but the DMN
(0.30) and OVN (0.45) had reduced spatial overlap with the corre-
sponding networks in joint ICA. Finally, RBNs from joint-ICA for BOLD
and ASL showed the highest agreement to the common group compo-
nent (DSC range 0.76–0.94) as well as between each other (DSC range
0.59–0.71). Although this high agreement is somewhat expected as
the RBNswere derived from the same concatenated ICA decomposition,
it is required to compare networks acrossmodalitieswhile ruling out ef-
fects of different ICA model orders and decompositions.
log to Fig. 2). Modality specific group RBNswere computed as one-sample t-test across the
r pCASL. Five common RBNs were analyzed: Default Mode Network (DMN), left and right
(AUN). Test–retest reliability for session and scanner are displayed as Intraclass Correlation
maps thresholded at z N 2). Differences between the two modalities (BOLD vs. ASL) were
. The bottom rowdisplays voxel-wise correlationmaps for CBF and Functional Connectivity
ove r N 0.4 are displayed. Correlation maps have been masked by ICA group RBN maps
5.



Table 1
Dice Similarity Coefficients (DSCs) between RBNs resulting from different ICA runs (joint-
ICA group component GC, joint-ICA ASL networks, joint-ICA BOLD networks and RBNs
from separate BOLD (BOLD-only) or ASL (ASL-only) ICAs. Highlighted are the DSCs be-
tween RBNs from ASL and BOLD based on the joint-ICA approach indicating high concor-
dance of network patterns.

Joint ASL Joint BOLD Only ASL Only BOLD

DMN
Joint GC 0.81 0.89 0.29 0.61
Joint ASL 0.71 0.35 0.57
Joint BOLD 0.27 0.61
Only ASL 0.35

RECN
Joint GC 0.76 0.82 0.67 0.62
Joint ASL 0.59 0.67 0.54
Joint BOLD 0.60 0.64
Only ASL 0.56

LECN
Joint GC 0.80 0.85 0.61 0.52
Joint ASL 0.66 0.61 0.45
Joint BOLD 0.58 0.55
Only ASL 0.41

OVN
Joint GC 0.77 0.94 0.46 0.69
Joint ASL 0.71 0.47 0.59
Joint bold 0.44 0.69
Only ASL 0.50

AUN
Joint GC 0.79 0.86 – 0.57
Joint ASL 0.66 – 0.47
Joint BOLD – 0.60
Only ASL –
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Repeatability of RBNs across time and scanner

Test–retest repeatability of ASL and BOLD based RBNswas estimated
using ICCs on a voxel-wise basis. The spatial distribution of ICC values
overlapped with the pattern of z-maps for the respective networks
(Figs. 2 & 3 and S2 & S3). Higher ICCs were found in areas with high
FC. Separate ICA for BOLD and ASL demonstrated good to excellent
ICCs in BOLD (average modal ICCs across RBNs: between sessions
0.800 ± 0.094; between scanners 0.735 ± 0.074), while ASL yielded
lower but still fairly reliable ICC values (0.619 ± 0.080/0.506 ± 0.109)
(Table 2). For joint-ICA based RBNs reliability was higher for BOLD
RBNs showing average modal ICCs of 0.905 ± 0.033 between sessions
and 0.885 ± 0.052 between scanners, and modal ICCs for ASL RBNs
were similar to ASL-only for reliability between sessions (0.545 ±
0.048) and between scanners (0.575±0.059) (Table 2). Voxel-wise dis-
play of ICC maps showed reliable test–retest repeatability between ses-
sions and scanners (ICC N 0.6, threshold in Figs. 2 & 3) for all networks
within their core areas (Table 3a).
Analysis of quantitative CBF within RBNs

Quantitative CBF values were obtained within masks of the gray
matter (GMCBF = 62.1 ± 13.1 ml/100 g/min) and the identified RBNs
(RBNCBF) by joint ICA respectively (DMN 71.1 ± 3.0 ml/100 g/min;
LECN 62.2 ± 2.83 ml/100 g/min; RECN 61.7 ± 3.6 ml/100 g/min; OVN
61.7 ± 4.4 ml/100 g/min; AUN 71.6 ± 5.9 ml/100 g/min; see Fig. 4).

The 2 × 2 repeated measures ANOVAs of global mean GMCBF as
well as GM-adjusted RBNCBF values for the DMN, the L-ECN and the
AUN did not show a statistically significant effect of scanner or session.
The R-ECN showed an interaction effect of scanner ∗ session (Fscanner =
9.13, p = 0.01/Fsession = 2.33, p = 0.16/Fscanner ∗ session = 10.88, p =
0.01) while the OVN showed an effect of session only (Fscanner = 2.04,
p=0.19/Fsession=5.29, p=0.05/Fscanner ∗ session= 0.18, p=0.68). Fur-
thermore, a main effect of network on RBNCBF values was observed
(F(4,36) = 14.97, p b 0.001) indicating that mean baseline perfusion
varies significantly across brain networks, with the DMN and the AUN
exhibiting higher CBF than the other 3 RBNs.

Repeatability of RBNCBF values across time and scanner was further
evaluated by ICC and showed highly reproducible global mean GMCBF

(modal ICC = 0.915 between sessions and 0.914 between scanners,
voxel-wise maps of CBF ICCs can be found in Fig. S7). Average modal
ICC values across RBNCBF were 0.955 ± 0.021 between sessions and
0.970 ± 0.011 between scanners (see Table 2 bottom right).

Analysis of CBF based ALFF

The ALFF analysis (Fig. 5A) revealed significant differences across
networks (ANOVA F-statistic F = 5.69, p b 0.001) and post-hoc t-tests
(Tukey–Kramer) revealed that R/L-ECNs were significantly different
from OVN and AUN at p b 0.05 level, whereas DMN did not show differ-
ences to any other network. Furthermore, RBN-ALFF was significantly
different across subjects (F = 4.37, p b 0.0005). Similarly, the normal-
ized ALFF (%ALFF signal of respective RBN-CBF; Fig. 5B) showed also a
significant effect of RBN (F(4)=8.9 p b 0.00003)with significant differ-
ences betweenRECNandDMN, OVN andAUN, aswell as LECN andAUN,
where the two ECNs showed higher % fluctuations than other networks.
Furthermore, the %ALFF with regard to RBN-CBF was different across
subjects (F(9) = 2.92, p b 0.01).

Differences in RBNs between BOLD and ASL

Analyses of the variations of the FC strength (or z values) of the
detected joint-ICA based RBNs (between modalities, scanners and
sessions, as well as associated interaction effects) were performed on
a voxel-wise level, using repeated-measures ANOVAs and post-hoc t-
tests. These analyses indicated a significant main effect of modality
(BOLD vs. ASL) in all networks. The majority of the differences between
BOLD and ASL RBNs were observed within the brain areas constituting
the corresponding networks. In general, BOLD networks showed a
stronger overall level of FC, with the exception of higher FC in several
specific regions of CBF networks (Figs. 3 & S4):

• The DMN showed higher FC for BOLD in the posterior areas
(Precuneus and bilateral angular gyrus) but higher FC in orbital-
medial frontal cortex in ASL.

• The two ECNs displayed higher FC in BOLD within network areas on
the respective hemisphere (inferior and superior frontal gyri as well
as temporal gyrus), but increased FC on the contralateral homotopic
areas in ASL.

• The AUN showed a difference in areas of the DMN (Precuneus and
medial frontal gyrus) where ASL showed higher FC.

• The OVN showed significantly stronger FC for BOLD in the primary vi-
sual cortex.

The coordinates and cluster sizes of detected significant FC differ-
ences are reported in Table 4.

Relationship between regional CBF and FC (z-scores)

Correlation between the network average z-scores for BOLD and ASL
RBNs revealed a significant correlation (r = 0.2; p b 0.005). The voxel-
wise correlations between RBN z-scores and the corresponding region-
al CBF of the same sessions resulted in significant correlations within
the network specific nodes of each RBN from separate as well as joint
ICA for both ASL and BOLD modalities (r N 0.4; p b 0.05) (Figs. 2, 3 &
S5). It is worth noting that the correlation between regional CBF and
FC was more pronounced in ASL than in BOLD RBNs, and specifically
the correlation was more prevalent within the DMN, OVN and LECN
(Table 3b).



Table 2
Within and between-scanner modal-ICC and standard deviations for BOLD and ASL resting brain networks (RBNs) for joint as well as separate ICA runs and average values over the four
chopped-BOLD runs (for chopped-BOLD please see Supplemental Material). Lower right lists the RBNs respective ICC values for CBF as well as for the global GM.

Within Between Within Between Within Between Within Between

DMN 0.925 0.900 0.174 0.173 DMN 0.550 0.625 0.240 0.232

LECN 0.900 0.925 LECN 0.625 0.650

RECN 0.875 0.875 RECN 0.525 0.525

OVN 0.950 0.925 OVN 0.500 0.525

AUN 0.875 0.800 AUN 0.525 0.550

Within Between Within Between Within Between Within Between

DMN 0.825 0.800 0.209 0.219 DMN 0.675 0.425 2.871 0.342

LECN 0.925 0.825 0.229 0.228 LECN 0.550 0.400 0.225 1.826

RECN 0.675 0.700 0.229 0.223 RECN 0.700 0.600 0.217 0.226

OVN 0.750 0.700 0.215 0.210 OVN/AUN 0.550 0.600 0.233 3.124

AUN 0.825 0.650 0.229 0.229

Within Between Within Between Within Between Within Between

DMN 0.681 0.700 0.214 0.215 DMN 0.975 0.950 0.057 0.041

LECN 0.744 0.725 0.209 0.812 LECN 0.950 0.975 0.051 0.053

RECN 0.731 0.706 0.219 0.226 RECN 0.950 0.975 0.043 0.057

OVN 0.794 0.713 0.226 0.221 OVN 0.975 0.975 0.024 0.040

AUN 0.669 0.656 1.056 3.059 AUN 0.925 0.975 0.074 0.049
aavarage over 4 runs

Global GM 0.916 0.915 0.065 0.060
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Discussion

ASL perfusion MRI has received considerable attention in clinical
neuroscience due to its quantitative and non-invasive nature. Absolute
CBF values obtained using ASL in the whole brain and specific brain re-
gions have been shown to be reproducible across time scales ofminutes,
hours to days (Chen et al., 2011; Jain et al., 2012; Jann et al., 2013; Wu
et al., 2011). There is a good correlation between ASL CBF and the gold
standard of 15O-PET in both resting state and activation studies (Feng
et al., 2004; Kilroy et al., 2013; Ye et al., 2000). Besides providing a ro-
bust mean CBF averaged across a few minute scan, it has been shown
to be feasible to perform dynamic FC analysis of the ASL perfusion
image series (Chuang et al., 2008; Dai et al., 2013; Jann et al., 2013;
Liang et al., 2012; Zou et al., 2009), similar to BOLD FC analysis. To
date, however, very few studies have systematically addressed the
similarity of RBNs detected using BOLD and ASL contrasts, as well as
their reliability across sessions and scanners. The present study
attempted to fill in this gap using the state-of-the-art pCASL with
single-shot 3D BS GRASE pulse sequence as well as rigorous statistical
approaches to evaluate the similarity and repeatability of RBNs in
BOLD and ASL rs-fcMRI.
Table 3
Percentage of voxelswithin eachof the fiveRBNs showing ICC N 0.6 or a significant CBF-FC
correlation in either BOLD or ASL.

DMN RECN LECN OVN AUN

A) Percentage of voxels within each RBN exhibiting ICC N 0.6

ASL intra 31.28% 22.28% 25.32% 23.57% 19.46%
ASL inter 25.74% 19.27% 21.71% 22.19% 19.94%
BOLD intra 80.46% 74.64% 81.09% 96.52% 80.56%
BOLD inter 82.40% 75.77% 82.79% 90.58% 63.44%

B) Percentage of voxels within each RBN displaying significant CFB-FC correlation

BOLD 3.54% 3.35% 8.62% 18.66% 2.97%
ASL 28.64% 2.11% 15.09% 16.33% 9.77%
Spatial similarity and repeatability of RBNs

The five RBNs analyzed in this study represented the DMN, left and
right ECNs, OVN and AUN. Their spatial pattern was consistent with
commonly reported networks in literature (Beckmann et al., 2005).
Specifically, these five networks were identified objectively by spatial
correlation of the ICA results to reference networks (Shirer et al.,
2012). Regarding the spatial similarity between BOLD and ASL RBNs,
we found a moderate to high level of concordance between ASL and
BOLD RBNs using both independent and joint ICA. DSC values indicated
substantial overlap between RBNs of BOLD-only and joint-ICA. For ASL-
only ICA, however, while ECNs presented similar spatial patterns to the
Fig. 4.Mean CBF values for RBNs (bar-plot). Line-plot represents mean values of separate
ASL sessions. DefaultMode Network (DMN), left and right Executive Control Networks (L/
R-ECNs), Occipital Visual Network (OVN) and Auditory Network (AUN).



Fig. 5. A) Average CBF-ALFF for each network and subject. B) %ALFFs with respect to RBN-CBF (adjusted for global GM-CBF). Subjects were ordered according to their overall mean ALFF.
ANOVA revealed significant ALFF differences across RBNs and subjects for both absolute and normalized ALFF.
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remaining ICA runs, DMN, OVN, and AUN revealed differences. Spe-
cifically, the DMN showed more widespread involvement of ante-
rior areas whereas AUN and OVN did not separate in ASL-only ICA
but were represented as a single component. This represents a well
known problem in ICA where different model orders can lead to split-
ting networks into subnetworks or merging them into one component
(Abou-Elseoud et al., 2010; Calhoun et al., 2001, 2009; Kiviniemi et al.,
2009). These differences in ICA decompositions resulting in heteroge-
neous RBNs pose a problem when matching RBNs from different ICA
runs and consequentially can bias further statistical analyses. Hence,
to avoid such a bias for statistical comparison of ASL and BOLD RBNs,
single subject maps for both modalities have to be computed within
the same framework. This can be achieved using identical seeds
(Viviani et al., 2011) or by integrating both modalities into a common
ICA. The joint group ICA computed all networks simultaneously across
modalities, which substantially improved their spatial concordance
(i.e. DSCs). Thus, while separate and joint analyses demonstrated that
ASL-based FC analysis is feasible and yields group RBNs consistent
with known BOLD-RBNs, only joint-ICA provided an unbiased decom-
position necessary for performing a proper statistical comparison. The
voxel-wise ANOVA comparing the RBNs of individual subjects comput-
ed by the joint-ICA revealed a significant main effect of modality in all
studied networks that was attributed to generally lower FC (z-scores)
in ASL as revealed by the post-hoc t-test, while scanner and session ef-
fects were negligible. Lower FC in ASL has been previously observed in
seed-based network analyses (Viviani et al., 2011) and thought to be re-
lated to lower SNR or fewer volumes, as discussed below.

The test–retest repeatability of BOLD-RBNs was found to be high,
both between sessions and scanners (short (hours) and long (days)
term reliability; Figs. 3 & 4 and Table 1). This finding was consistent
with earlier studies showing that RBNs can be reliably identified across
time (Shehzad et al., 2009) and resting conditions (i.e., eyes open, closed
or fixating on a cross) (Patriat et al., 2013) using BOLD rs-fcMRI. More-
over, BOLD-RBNs showed higher reliability than components related to
physiological noise and imaging artifacts (Zuo et al., 2010). These find-
ings further established/corroborated the reliability of ICA-based FC
analyses in BOLD rs-fcMRI data. In the present study, RBNs from ASL-
only ICA exhibited relatively lower yet still adequate test–retest repeat-
ability across sessions and scanners. Joint-ICA showed generally slightly
increasedmodal ICCs for both BOLD and ASL, but markedly reduced the
standard deviation of ICC valueswithin a network. Thesefindings herald
the potential of performing rs-fcMRI studies in individual subjects using
BOLD and ASL contrasts, although to a lesser degree with the latter. Fur-
thermore, since ASL showed stronger FC in medial prefrontal regions of
the DMN compared to BOLD due to reduced sensitivity to susceptibility
artifacts (Fernandez-Seara et al., 2005; Liang et al., 2012), it may be par-
ticularly valuable in studying psychiatric disorders involving the
orbitofrontal cortex.

To make a note of caution, functional connectivity analyses present
a coarse measure of brain organization while the true organization of
brain networks is still unknown. Moreover, since BOLD and ASL mea-
sure different contrasts of neurovascular coupling but are physiological-
ly related and reflect hemodynamic fluctuations, it is reasonable to
assume that they share common RBNs. It is likely that both resting
state BOLD and ASL data will be acquired in future neuroimaging stud-
ies. The proposed joint ICA may offer an appealing approach to identify
more reliable findings in terms of network connectivity, since the find-
ings need to be replicated in both BOLD and ASL data, compared to
performing ICA on each modality separately.
Reliable network-specific CBF quantification

While the spatial pattern of RBNs appears more reliable using BOLD,
ASL provides network specific CBF measurements, a physiologically
meaningful parameter inaccessible by BOLD. We found that both global
and network CBF can be reliably assessed between sessions and scan-
ners (modal ICCs above 0.9). This high modal ICC might be due to the
fact that global CBFdifferences contribute to a large inter-individual var-
iance compared to intra-subject variance thus increasing voxel-level
ICCs. This finding has implications for rs-fcMRI studies in clinical popu-
lations. Specifically, the capability for reliable CBF quantification be-
comes crucial in patient studies where pathophysiology (Alsop et al.,
2010; Detre et al., 2012; Detre et al., 2009; Grieder et al., 2013) or med-
ication (Chen et al., 2011; Wang et al., 2011) is likely to alter global or
regional CBF. In support for this notion, the major RBNs exhibit consis-
tent, systematic differences in baseline CBF levels, regardless whether
correction for global CBF is performed or not.



Table 4
Summary table of two-sample t-test between single subject RBN maps from BOLD and ASL respectively. Anatomical label, peak voxels of clusters, cluster sizes and t-value at peak voxels are listed.

DMN Peak MNI coordinate Hemisphere Anatomical label #Voxels in
cluster

t-Value at peak
coordinate

Peak MNI coordinate Hemisphere Anatomical label #Voxels in
cluster

t-Value at peak
coordinate

x y z x y z

ASL N BOLD −54 10 34 Left Inferior frontal gyrus 501 −6.26 BOLD N ASL −56 −10 −12 Left Middle temporal gyrus 1372 6.46
−52 −40 54 Left Inferior parietal lobe 1221 −5.56 −44 −70 30 Left Angular Gyrus 2241 9.52
−46 40 24 Left Middle frontal gyrus 312 −5.43 −32 52 −2 Left Middle frontal gyrus 319 6.81
−32 −2 64 Left Precentral gyrus 343 −5.46 −20 −88 −8 Left Lingual gyrus 606 7.57
−20 −88 24 Left Cuneus 633 −5.95 48 −64 28 Right Angular gyrus 1872 10.01
−4 44 −20 Left Orbito-frontal gyrus 692 −7.68 44 −2 18 Right Insula 377 5.60
60 −42 48 Right Inferior parietal lobe 752 −5.67 38 22 24 Right Inferior frontal gyrus 272 6.11
50 20 −6 Right Inferior frontal gyrus 287 −5.31 36 −24 −10 Right Hippocampal gyrus 419 5.94
40 44 32 Right Middle frontal gyrus 427 −5.80 26 −80 −6 Right Fusiform gyrus 463 6.44
30 0 66 Right Superior frontal gyrus 441 −4.79 26 −36 58 Right Postcentral gyrus 335 8.14
28 −80 22 Right Cuneus 329 −5.61 4 −70 34 Right Precuneus 5129 18.86
18 −64 −12 Right Lingual gyrus 723 −5.59
6 26 34 Right Anterior cingulate gyrus 220 −4.34

LECN Peak MNI coordinate Hemisphere Anatomical label #Voxels in
cluster

t-Value at peak
coordinate

Peak MNI coordinate Hemisphere Anatomical label #Voxels in
cluster

t-Value at peak
coordinate

x y z x y z

ASL N BOLD −60 −6 34 Left Postcentral Gyrus 559 −4.89 BOLD N ASL −54 16 28 Left Inferior frontal gyrus 205 5.99
−42 −84 4 Left Occipital gyrus 649 −5.69 −30 −66 50 Left Superior parietal lobe 12497 12.24

22 14 −34 Right Temporal pole 264 −6.54 −20 0 56 Left Superior frontal gyrus 2355 6.50
10 −66 22 Right Precuneus 3326 −7.15 42 32 16 Right Inferior frontal gyrus 207 4.34
6 62 −4 Right Orbito-frontal gyrus 321 −4.72 38 −68 44 Right Angular gyrus 228 4.96

28 8 −6 Right Putamen 260 5.05
20 4 56 Right Superior frontal gyrus 288 5.17

RECN Peak MNI coordinate Hemisphere Anatomical label #Voxels in
cluster

t-Value at peak
coordinate

Peak MNI coordinate Hemisphere Anatomical label #Voxels in
cluster

t-Value at peak
coordinate

x y z x y z

ASL N BOLD −20 0 −28 Left Parahippocampal gyrus 2272 −7.54 BOLD N ASL −42 6 26 Left Inferior frontal gyrus 329 5.01
−2 −88 20 Left Cuneus 5871 −9.37 −36 −92 −12 Left Inferior occipital gyrus 472 6.01

−2 42 −26 Left Rectal gyrus 449 7.21
52 −20 −26 Right Inferior temporal gyrus 6564 9.15
46 6 −18 Right Temporal pole 1888 7.92
30 6 64 Right Middle frontal gyrus 437 6.90
24 −74 50 Right Superior parietal lobe 2708 9.70
20 −20 70 Right Precentral gyrus 236 5.37
8 −6 12 Right Thalamus 339 6.52
4 −36 44 Right Cingulate gyrus 292 5.11

AUN Peak MNI coordinate Hemisphere Anatomical label #Voxels in
cluster

t-Value at peak
coordinate

Peak MNI coordinate Hemisphere Anatomical label #Voxels in
cluster

t-Value at peak
coordinate

x y z x y z

ASL N BOLD −60 −6 34 Left Postcentral gyrus 559 −4.89 BOLD N ASL −54 16 28 Left Inferior frontal gyrus 205 5.99
−42 −84 4 Left Middle occipital gyrus 649 −5.69 −30 −66 50 Left Superior parietal lobe 12497 12.24

22 14 −34 Right Temporal pole 264 −6.54 −20 0 56 Left Superior frontal gyrus 2355 6.50
10 −66 22 Right Precuneus 3326 −7.15 42 32 16 Right Inferior frontal gyrus 207 4.34
6 62 −4 Right Orbito-medial frontal gyrus 321 −4.72 38 −68 44 Right Angular gyrus 228 4.96

28 8 −6 Right Putamen 260 5.05
20 4 56 Right Superior frontal gyrus 288 5.17

OVN Peak MNI coordinate Hemisphere Anatomical label #Voxels in
cluster

t-Value at peak
coordinate

Peak MNI coordinate Hemisphere Anatomical label #Voxels in
cluster

t-Value at peak
coordinate

x y z x y z

ASL N BOLD −52 −22 42 Left Supramarginal gyrus 437 −5.74 BOLD N ASL −6 32 40 Left Medial frontal gyrus 680 5.01
−22 −40 6 Left Hippocampal gyrus 454 −8.04 0 −80 2 Left Lingual gyrus 11213 17.46 119
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The DMN and the AUN showed the highest levels of CBF among all
networks, which were also higher than the global CBF. This finding is
consistent with earlier work measuring CBF in brain networks and
suggests that the DMN may retain a higher level of metabolic activity
during baseline (Li et al., 2012b), which is suppressed during task
performance (Rao et al., 2007; Zhu et al., 2013). The DMN initially was
described as a network that exhibits higher metabolic activity (in
FDG-PET) during rest and shows deactivation during task execution
(Raichle et al., 2001). For the AUN it is argued that it is not completely
at rest since there is continuous sound as a consequence of scanning.
CBF is proposed as a closemarker for metabolic activity as it is normally
coupled with glucose uptake of neuronal populations during activity
(Fox et al., 1988) and further highly correlates with baseline GABA con-
centrations and thus indicates changes in excitatory (glutamatergic)
and inhibitory (GABA-ergic) neurotransmitters fundamental to the reg-
ulation of neuronal firing rates (Donahue et al., 2010) (for review see
(Raichle, 1998)). To sum, these findings suggest that network specific
CBF may represent the metabolic activity of the associated network
that is inaccessible by BOLD rs-fcMRI. Since the repeatability of both
BOLD RBNs and network specific ASL CBF were high, the combination
of ASL and BOLD into a joint FC analysis may provide a powerful tool
in future rs-fcMRI studies carried out across time and scanners.

Besides baseline metabolism of brain areas within a network
assessed by CBF, the amplitudes of fluctuations have been argued to
present another characteristic of networks and brain areas. ALFF was
introduced as a measure related to the amount of spontaneous neuro-
nal activity within brain areas (Zang et al., 2007). However, while
conventionally computed on relative BOLD signal fluctuations these
amplitudes have no unit, performing the computation on CBF fluctua-
tions however, it becomespossible to attribute a quantitative physiolog-
ical unit [ml/100 g/min] to these fluctuations. Our results show that
there are systematic differences between subjects as well as across net-
works in the amplitudes of their fluctuations. Notably, the %ALFF nor-
malized to RBN-CBF (Chuang et al., 2008) showed a similar pattern as
the absolute ALFF, suggesting that ALFFs are independent of baseline
CBF andmight provide an additional physiological marker to character-
ize temporal fluctuations of RBNs in future studies.

Relation between network CBF and network functional connectivity

The correlation analysis between regional CBF and ASL-FC strength
(z-scores) revealed a positive relation between these two physiolog-
ical measures in certain areas specific for the distinct networks. These
observations are in linewith recent reports showing evidence for specif-
ic coupling between regional CBF and functional connectivity from
separate ASL and BOLD scans in certain nodes of a network (Li et al.,
2012c; Liang et al., 2013). Accordingly, these findings of FC–CBF rela-
tionships indicate that CBF and FC provide complementary yet related
information on the brain's baseline functional organization. Recent re-
ports suggest that rCBF in specific network nodes present the cost to
maintain proper network integrity (Liang et al., 2013; Tomasi et al.,
2013) and that in disease both markers show alterations (Kindler
et al., 2013). In line with this notion, a study in Alzheimer's disease
patients showed an association of CBF and FC in nodes of the DMN
that were correlated with cognitive performance. Furthermore, medical
treatment enhanced bothmeasures alongwith reductions in disease se-
verity (Li et al., 2012a). Hence including global and regional CBF into FC
analysis might contribute to the understanding of inter-individual vari-
ability, specifically in clinical populations where alterations in both
characteristics have been observed and might influence each other as
well as BOLD responses during task performance (Liu et al., 2012).

Study limitations and further development of ASL rs-fcMRI

Besides considerable overlap between ASL and BOLD RBNs, there are
significant differences in their spatial patterns in specific areas of the
RBNs. These differences primarily arise from the imagingmodality rath-
er than effects of different scanners or sessions. There are several poten-
tial causes underlying the overall lower connectivity strength in ASL
and its lower reliability. First, although recordings had the same dura-
tion (i.e. 8 min) ASL had only one fourth of the image volumes of the
BOLD scan. This is due to the requirement of ASL for labeling of the
inflowing blood, a post-labeling delay to account for arterial transit
times and the fact that always a control and a label image have to be ac-
quired in order to quantify CBF. Secondly, ASL has lower SNR compared
to BOLD (Aguirre et al., 2002) which hampers FC analysis using ICA or
cross-correlation. To explore if the lower FC in ASL was due to reduced
temporal resolution or SNR we explored the effects of both possible
causes. We subdivided (chopped) the BOLD timeseries to match the
temporal resolution of ASL by taking every fourth volume of the BOLD
run (see Supplemental Material). Performing ICA and subsequent anal-
yses on the chopped BOLD datasets, we found only minor reductions in
modal ICCs (Table 2) and DSCs (Table S1). These results confirm earlier
studies demonstrating that temporal resolution has minor effects on FC
analysis and that rather the total scan time (which was the same for all
datasets in the present study) is a critical factor affecting FC reliability
(Birn et al., 2013; Van Dijk et al., 2010). The analysis of temporal SNR
revealed that BOLD rs-fcMRI had overall higher temporal SNR than
CBF (see Supplemental Material). However, the t-test also revealedme-
dial and orbitofrontal areas with higher SNR in CBF, the same area that
showed increased CBF functional connectivity (Fig. S8. (Liang et al.,
2012)). This increased sensitivity in areas close to tissue–air boundaries
are known to cause susceptibility artifacts in EPI image acquisition
which are greatly alleviated in 3D GRASE readout (Vidorreta et al.,
2012). While increased FC in areas of susceptibility can be explained
by the better sensitivity of ASL in these areas, each RBN showed addi-
tional clusters of increased FC in ASL. These clusters are mostly outside
the z-maps of the distinct RBNs and could suggest decreased sensitivity
of ASL to separate RBNs. The reduced tSNR combined with shorter
timeseries might cause fluctuations across voxels to share moremutual
information and hence increased correlationwith the group component
template fluctuation. As a consequence, ASL-RBNs might show more
widespread and less well segregated networks than BOLD since the in-
formation content of voxel timeseries is less separable than in BOLD.
This limitation might be overcome in future studies by using longer
CBF timeseries or increasing the model-order of the ICA for ASL.

Another issue that is known to influence FC is motion (Power et al.,
2012; Van Dijk et al., 2012). Especially if systematic motion differences
exist between two groups or, in the case of the present study,modalities
this has to be considered. However, statistical analyses of translational
and rotational motion yielded neither significant differences between
modalities nor between sessions or scanners (see SupplementalMateri-
al). Hence, the differences in FC between BOLD and ASL RBNs might be
mainly attributed to SNR.We did not report motor networks due to the
presence of wrap around signals in the top slices of 3D GRASE images.
While possessing great promise for rs-fcMRI studies, the spatial resolu-
tion and image coverage still need to be improved in pCASLwith single-
shot 3D BS GRASE for widespread applications in clinical neuroscience.

Conclusion

To conclude, the combination of quantitative information on net-
work metabolism from ASL and spatial organization of functional net-
works from BOLD rs-fMRI provides a powerful tool for characterizing
RBNs. While BOLD RBNs showed excellent test–retest reliability across
sessions and scanners in their spatial pattern, ASL RBNs showed reduced
yet still adequate repeatability. The highly reproducible network-
specific ASL CBFmeasurements may complement BOLD rs-fMRI by pro-
viding quantitative CBF as an index of the metabolic activity of specific
networks.

Moreover, we found that FC strength in RBNs is correlated with the
baseline CBF in core areas of the corresponding networks. This suggests
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that joint FC and network CBF analyses using BOLD and ASL may fully
characterize the spatiotemporal and quantitative properties of RBNs
that are especially desirable for longitudinal rs-fcMRI studies, pharma-
cologicalMRI studies aswell as for the comparison of RBNs across differ-
ent subject groups.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.11.028.
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