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A B S T R A C T   

Background: Despite broad recognition of the central role of avoidance in anxiety, a lack of specificity in its 
operationalization has hindered progress in understanding this clinically significant construct. The current study 
uses a multimodal approach to investigate how specific measures of avoidance relate to neural reactivity to 
threat in youth with anxiety disorders. 
Methods: Children with anxiety disorders (ages 6–12 years; n = 65 for primary analyses) completed laboratory 
task- and clinician-based measures of avoidance, as well as a functional magnetic resonance imaging task probing 
neural reactivity to threat. Primary analyses examined the ventral anterior insula (vAI), amygdala, and 
ventromedial prefrontal cortex (vmPFC). 
Results: Significant but distinct patterns of association with task- versus clinician-based measures of avoidance 
emerged. Clinician-rated avoidance was negatively associated with right and left vAI reactivity to threat, whereas 
laboratory-based avoidance was positively associated with right vAI reactivity to threat. Moreover, left vAI-right 
amygdala and bilateral vmPFC-right amygdala functional connectivity were negatively associated with clinician- 
rated avoidance but not laboratory-based avoidance. 
Limitations: These results should be considered in the context of the restricted range of our treatment-seeking 
sample, which limits the ability to draw conclusions about these associations across children with a broader 
range of symptomatology. In addition, the limited racial and ethnic diversity of our sample may limit the 
generalizability of findings. 
Conclusion: These findings mark an important step towards bridging neural findings and behavioral patterns 
using a multimodal approach. Advancing understanding of behavioral avoidance in pediatric anxiety may guide 
future treatment optimization by identifying individual-specific targets for treatment.   

1. Introduction 

Anxiety disorders are the most prevalent mental health disorders in 
youth and have the potential for a chronic course when not effectively 
addressed (Costello et al., 2005; Kessler et al., 2005; Merikangas et al., 
2010). Most lifetime anxiety disorders emerge during childhood and 
adolescence, marking a period of particular risk (Beesdo et al., 2009; 
Gregory et al., 2007; Kessler et al., 2005). Considering the early age of 
onset and long-lasting consequences of anxiety, understanding the 
mechanisms that contribute to the maintenance of pediatric anxiety 
disorders could promote early detection and guide intervention devel
opment. Previous research has implicated elevated behavioral 

avoidance of threat as one such mechanism contributing to the main
tenance of anxiety disorders (Whiteside et al., 2013). Maladaptive or 
excessive avoidance of potential threat is associated with poorer overall 
functioning in anxious youth, and avoidance is thought to contribute to 
the maintenance of pediatric anxiety disorders (Shimshoni et al., 2018; 
Silverman and Kurtines, 1997). In fact, reducing maladaptive avoidance 
through exposure is a key feature of current first-line psychosocial 
treatments for pediatric anxiety (Silverman et al., 2008). 

Despite broad recognition of the central role of avoidance in anxiety 
disorders, a lack of specificity in the operationalization of avoidance has 
hindered progress in understanding this clinically significant construct. 
Avoidance of threat encompasses an array of heterogeneous behaviors 
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and tendencies (Krypotos et al., 2015; LeDoux and Daw, 2018; Silver
man et al., 2008). For example, avoidance behavior may involve 
intentional, conscious decisions to avoid anticipated threat (LeDoux and 
Daw, 2018), such as a child actively choosing not to attend a party to 
avoid the anticipated threat of a socially evaluative interaction. Alter
natively, avoidance behavior may arise out of implicit determinations of 
threat or habitual patterns (LeDoux and Daw, 2018), such as a child who 
unknowingly avoids eye contact with unfamiliar peers. 

In line with the complex constellation of behaviors encompassed by 
the broad construct of behavioral avoidance, previous studies have 
measured avoidance in a multitude of ways, including via performance 
on laboratory-based tasks and via reports of real-world behaviors, such 
as self-report, parent-report, and interview-based ratings (Etkin et al., 
2021a; Etkin et al., 2021b; Krypotos et al., 2015; Silverman and Ollen
dick, 2005). Recent advances in motion-tracking technology and ap
proaches that integrate information across multiple informants have 
improved the validity of measures of avoidance (Lebowitz and François, 
2018). Despite these advances, these measures are typically considered 
in isolation (Lebowitz et al., 2018), leaving a critical gap in under
standing of how distinct measures of avoidance relate to one another. 
For example, avoidance measures vary on the proximity and immediacy 
of the threat measured, as well as the need for explicit recognition of 
avoidance behavior. Some measures, such as the Yale Interactive Kinetic 
Environment Software (YIKES) task (Lebowitz and François, 2018), 
examine in-the-moment physical avoidance of continuously present 
stimuli. By measuring avoidance with physical movements, this task 
circumvents the need for explicit recall. In contrast, interview-based 
measures such as the Pediatric Anxiety Rating Scale (PARS; Research 
Units on Pediatric Psychopharmacology Anxiety Study Group, 2002) 
rely on explicit recall but integrate information from parents and chil
dren to capture a holistic measure of avoidance in children's daily lives. 
Unlike the YIKES task, this measure can assess anticipatory avoidance of 
prospective future threats. While both are considered avoidance mea
sures, they are designed to assess different components of the broad 
construct of avoidance. 

As suggested by LeDoux and Daw (2018), different operationaliza
tions of avoidance are likely to have distinct underlying neural mecha
nisms. Decades of research showing a lack of consistent concordance 
among subjective, behavioral, and physiological measures of anxiety (e. 
g., Bradley and Lang, 2000; Lang, 1968) highlight the importance of 
considering responses to threat across multiple levels of analysis 
(LeDoux and Daw, 2018; Taschereau-Dumouchel et al., 2022). However, 
while parallel lines of research have demonstrated anxiety-related al
terations in both neural reactivity to and avoidance of threat in anxious 
youth, scant research has examined how these processes might relate to 
one another. 

The insula, amygdala, and ventromedial prefrontal cortex 
(vmPFC)—regions that show altered functioning and connectivity in 
anxiety disorders (e.g., Klumpp et al., 2012; McClure et al., 2007; Monk 
et al., 2008; Prater et al., 2013; Stein et al., 2007; Thomas et al., 2001)— 
play key roles in avoidance behavior (Aupperle and Martin, 2010; 
Martin, 2022). Specifically, converging evidence in adults with anxiety 
disorders and non-anxious children suggests that laboratory-based 
measures of behavioral avoidance are associated with elevated amyg
dala, vmPFC, and insula activation (Aupperle and Martin, 2010; Schlund 
et al., 2011; Schlund et al., 2010). Cross-species evidence highlights the 
role of the insula in active avoidance, which involves taking specific 
actions to avoid an aversive outcome (Cohodes et al., 2022; Limbachia 
et al., 2021; Luchsinger et al., 2021; Meine et al., 2021; Rogers-Carter 
et al., 2018). In particular, the ventral anterior insula (vAI) has generally 
been implicated in processing negative emotional stimuli and social 
threat via connections with the limbic system (Büchel et al., 1998; 
Chang et al., 2013; Phan et al., 2002; Sequeira et al., 2021; Uddin et al., 
2017; Wang et al., 2018). The amygdala plays a central role in the 
expression of fear (LeDoux, 2007; Phelps et al., 2004; Phelps and 
LeDoux, 2005) and shows elevated activation in the presence of threat, 

including during avoidance tasks (Mobbs et al., 2009; Mobbs et al., 
2007; Patrick et al., 2019). Finally, the vmPFC, which modulates fear 
expression (Etkin et al., 2015; Quirk and Beer, 2006; Suzuki and Tanaka, 
2021), has been implicated in monitoring threat imminence and may be 
particularly involved in avoidance of distal threats (Mobbs et al., 2007; 
Patrick et al., 2019; Wendt et al., 2017). However, these patterns of 
association have not yet been tested in the context of pediatric anxiety 
disorders, and the associations between neural activation and other 
measures of avoidance, such as clinician ratings, remain unknown. 

Interactions among these regions are also theorized to modulate 
avoidance behavior. Connections between the vmPFC and both the 
amygdala and the insula support adaptive emotion regulation and sa
liency detection (Banks et al., 2007; Delgado et al., 2008; Qin et al., 
2014). On the other hand, functional connectivity between the amyg
dala and the anterior insula is linked to state anxiety (Baur et al., 2013). 
Thus, behavioral avoidance may be expected to be associated with 
weaker vmPFC-amygdala and vmPFC-insula functional connectivity and 
with stronger insula-amygdala functional connectivity. 

Examining these associations holds important theoretical, method
ological, and clinical implications. Theoretically, elucidating the asso
ciations among specific measures of threat responsivity can shed light on 
specific mechanisms through which neural processing of threat is 
translated into specific operationalizations of behavioral avoidance in 
pediatric anxiety disorders (Pine, 2007). This multimodal approach may 
be particularly important in this population, given the broad heteroge
neity in children with anxiety disorders (Lebowitz et al., 2018). Meth
odologically, using multiple levels of analysis to investigate avoidance in 
pediatric anxiety disorders can explain previously observed discrep
ancies across distinct measures of avoidance (Kitt et al., 2022). Clini
cally, given the central role of reducing avoidance in treatment for 
children with anxiety disorders (Kendall et al., 2008; Silverman et al., 
2008), advancing understanding of this behavioral hallmark can 
potentially guide future treatment optimization efforts by identifying 
individual-specific targets for treatment. 

2. The present study 

The current study uses a multimodal approach to investigate asso
ciations between neural reactivity to and avoidance of threat in children 
with anxiety disorders. We hypothesized that greater laboratory-based 
avoidance would be associated with stronger vAI, amygdala, and 
vmPFC activation, with stronger vAI-amygdala connectivity, and with 
weaker vmPFC-amygdala and vmPFC-vAI connectivity in response to 
threatening stimuli. Given evidence that laboratory-based behavioral 
measures and clinician-ratings of avoidance may capture distinct com
ponents of avoidance, we also examined associations with clinician- 
rated avoidance. We hypothesized that these two measures of avoid
ance would be correlated but that patterns of neural reactivity to 
threatening stimuli would differ in their associations with laboratory- 
based versus clinician-rated avoidance. 

3. Method 

3.1. Participants 

Data used in the current study were collected as part of a randomized 
controlled trial (RCT) of psychosocial treatment for pediatric anxiety in 
New Haven, Connecticut. Seventy-six children with primary anxiety 
disorders completed measures of neural reactivity to and avoidance of 
threat prior to receiving treatment. All children were between the ages 
of 6 and 12 years old (M = 8.83, SD = 1.89; 28 female, 48 male; see 
Table 1 for descriptive statistics), and all participants met criteria for a 
primary anxiety disorder according to the Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition (American Psychiatric Asso
ciation, 2013). Diagnoses were determined by trained evaluators using 
the Anxiety Disorders Interview Schedule-Child and Parent Versions 
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(ADIS-C/P; Silverman et al., 2001) and were confirmed by a child and 
adolescent psychologist. In addition, all child participants had not yet 
begun pubertal development, as indicated by a score of <2 on the 
Petersen Pubertal Development Scale (Petersen et al., 1988). Child 
participants were also required to have an IQ above 80, as assessed using 
the Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999). 
Exclusionary criteria for child participants included: a) pervasive 
developmental disorders, neurological disorders, or psychotic disorders; 
b) high risk for harming self or others; c) current psychosocial or psy
chopharmacological treatment; d) a lifetime history of neurological 
illness or head injury resulting in loss of consciousness longer than five 
minutes; e) visual or physical disability that would interfere with seeing 
stimuli presented on a screen or rapidly and repeatedly clicking a mouse 
button; and f) contraindication for MRI scanning (e.g., braces, claus
trophobia, or metal implants). Additionally, given the central role of 
parents in the larger RCT, children were excluded from participation if 
their parents met the following exclusionary criteria: a) pervasive 
developmental disorders, mental retardation, selective mutism, bipolar 
disorder, psychotic disorders, or drug/alcohol abuse or dependence; b) 
lived with the child for <1 year prior to the start of the study; or c) had 
attempted suicide within the past 6 months. 

3.2. Procedure 

All procedures were reviewed and approved by the Yale University 
Institutional Review Board. Child participants and their parents first 
provided their informed assent/consent. To confirm eligibility, all child 
participants and their parents completed the ADIS-C/P (Silverman et al., 
2001). All diagnoses were determined by trained evaluators and 
confirmed by a child and adolescent psychologist. Trained evaluators 
also administered a clinician rating of the child's real-world avoidance 
over the past week, and child participants completed a laboratory-based 
measure of behavioral avoidance of threatening stimuli (see Measures). 
Evaluators completed significant training, including formal training, 
viewing videos of ‘gold standard’ administration, practice administra
tion, and shadowing advanced evaluators prior to administering the 
interview measures (including the ADIS and the Pediatric Anxiety Rat
ing Scale; see Measures). For the ADIS, the instrument developer (co- 
author WKS) oversaw all training and usage. Shortly following this 
clinical assessment, during a separate scanning visit, child participants 
completed a functional magnetic resonance imaging (fMRI) task probing 
children's neural reactivity to threatening versus neutral face stimuli. 
The average number of days between the initial clinical assessment and 
the fMRI scanning visit was 15.28 days (range: 1–38 days). Child par
ticipants received monetary compensation ($50) for participating in the 
MRI scanning session, as well as an additional $50 if they completed all 
components of the scanning session. 

3.3. Measures 

3.3.1. Anxiety symptom severity 
Child participants completed the Screen for Child Anxiety Related 

Emotional Disorders – Child Version (SCARED-C; Birmaher et al., 1997) 
as a self-reported measure of anxiety symptom severity. The SCARED-C 
has good test-retest reliability, internal consistency, and discriminant 
validity (Birmaher et al., 1999; Birmaher et al., 1997; Etkin et al., 2021b; 
Hale et al., 2011). The SCARED-C assesses 41 anxiety symptoms on a 3- 
point Likert-type scale ranging from 0 (“Not True or Hardly Ever True”) 
to 2 (“Very True or Often True”). Scores are summed across items to 
isolate a measure of total anxiety symptom severity, with possible total 
scores ranging between 0 and 82. In the current sample, scores ranged 
from 6 to 58, and Cronbach's alpha was 0.87. 

3.3.2. Avoidance measures 
Clinician-Rated Avoidance. Trained evaluators administered the 

Pediatric Anxiety Rating Scale (PARS; Research Units on Pediatric Psy
chopharmacology Anxiety Study Group, 2002) to obtain a clinician- 
rated measure of children's avoidance of threat. The PARS has satisfac
tory convergent and divergent validity, good internal consistency, and 
adequate test-retest reliability (Research Units on Pediatric Psycho
pharmacology Anxiety Study Group, 2002). An interview-based mea
sure, the PARS consists of 50 items assessing children's anxiety 
symptoms over the past week prior to the clinical interview. Following 
separate interviews conducted with both the parent and child, trained 
evaluators consolidate the information gleaned from both informants. 
For the present study, we isolated the avoidance section of the PARS, 
which consisted of the trained evaluator's overall rating of the child's 
recent avoidance on a 6-point Likert-type scale ranging from 0 (“None”) 
to 5 (“Extreme”). A score of 3 (“Moderate”) or above on this Likert-type 
scale indicates clinically significant levels of avoidance. In the current 
sample, clinician-rated avoidance ranged from 0 to 4. 

Laboratory Task-Based Avoidance. Child participants completed a 
Yale Interactive Kinetic Environment Software (YIKES) task (Lebowitz 
and François, 2018) as a laboratory-based measure of avoidance of 
threat. In the YIKES task, participants physically move from side to side 
to catch randomly presented falling targets in a life-sized virtual envi
ronment, with their images dynamically embedded in this virtual 
environment using motion-tracking technology (Microsoft, Washington, 
USA). The targets are uniformly distributed across the width of the 
screen, and participants are instructed to try to catch as many of these 
falling targets as possible. Unrelated to this goal, pairs of task-irrelevant 
face stimuli (one angry, one neutral) are continuously presented on 
either side of the virtual environment (Fig. 1). The threatening stimulus 
(i.e., the angry face) alternates sides of the screen, with a total of six 
distinct stimulus pairs presented for a minute each. A growing body of 
research indicates that the angry face stimuli evoke avoidance behavior, 
as measured using the YIKES task, in children with anxiety disorders 
(Abend et al., 2021; Lebowitz and François, 2018). 

Kinect-motion tracking technology provided continuous measure
ments of child participants' movement in relation to the two task- 
irrelevant face stimuli. Using these continuous measurements, we iso
lated an index of avoidance of the threatening stimuli for each partici
pant by comparing the average distances at which participants turned 
away from the two stimulus types. Specifically, we identified times at 
which the participant changed directions, and we calculated the average 
distance (relative to the size of the virtual environment, with the angry 
face set as zero and the neutral face set as one) at which participants 
turned away from each stimulus type (fearful or neutral face) when 
moving towards that side of the virtual environment. In line with prior 
work using the YIKES task, we subtracted the distance at which partic
ipants turned away from the angry face from one so that both “turning 
points” reflected the average distance at which participants turned away 
relative to the relevant stimulus. We then subtracted the average turning 
point away from the angry face from the average turning point away 

Table 1 
Demographic information.   

Participants 

N 76 
Female [N (%)] 28 (36.84) 
Male [N (%)] 48 (63.16) 
Age [years, M (SD)] 8.83 (1.89) 
Race [N (%)]  

Asian 2 (2.63) 
Black or African American 3 (3.95) 
White 61 (80.26) 
Multiracial 8 (10.53) 
Unknown 2 (2.63) 

Ethnicity [N (%)]  
Hispanic or Latino 8 (10.53) 
Not Hispanic or Latino 67 (88.16) 
Unknown 1 (1.32)  
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from the neutral face (Lebowitz and François, 2018; Lebowitz et al., 
2015): 

Avoidance index = average turning point away from neutral face – 
average turning point away from angry face. 

This index of YIKES-based avoidance has been found to have good 
test-retest reliability and good convergent and divergent validity (Leb
owitz and François, 2018). In the current sample, laboratory-based 
avoidance indices for the faces run of the task ranged from − 0.04 to 
0.03, similar to that seen in separate samples of similarly aged youth (e. 
g., Kitt et al., 2022). 

3.3.3. Neural reactivity to fearful versus neutral faces 
Child participants completed an event-related fMRI paradigm prob

ing neural reactivity to fearful versus neutral social stimuli. During this 
task, participants viewed face stimuli, selected from the NimStim set of 
facial expressions (Tottenham et al., 2009), exhibiting either fearful or 
neutral expressions. Participants completed two runs of 48 trials each 
(24 trials of face stimuli with fearful expressions, 24 trials of stimuli with 
neutral expressions), with each face stimulus presented for 500 ms. 
Stimulus presentation was randomized but fixed across participants. To 
ensure engagement with the task, participants were instructed to press a 
button every time they saw any neutral face stimulus presented during 
the task. The child's parent was physically present in the scanner room 
during one run of the task (with the order of runs counterbalanced across 
consecutive participants). As the current study aimed to examine asso
ciations with general patterns of neural reactivity to threat, neural re
sponses were averaged across the two runs. As in prior studies (Hariri 
et al., 2002), all analyses in this study examined differences in neural 
responses to faces exhibiting fearful versus neutral expressions as the 
measure of neural reactivity to threat. Acquisition and preprocessing of 
neural data followed the same parameters as in previous work from this 
RCT (Kitt et al., 2023; see Supplemental Material). 

3.3.4. Statistical analyses 
We used Pearson's correlation to compare the two metrics of avoid

ance (performance on the in-laboratory behavioral task and clinician 
rating of real-world recent avoidance) and to examine the associations 
between each metric and anxiety symptom severity. To investigate the 
association between neural reactivity to and avoidance of threatening 
versus neutral face stimuli, we conducted a series of linear models with 
avoidance (laboratory-based and clinician-rated) as the dependent 
variable and neural reactivity to fearful versus neutral faces as the in
dependent variable. Youth age, sex, scan order, and mean framewise 
displacement were included as covariates in all models. A separate set of 

models was run for each avoidance measure (laboratory-based or 
clinician-rated avoidance), and separate models were run for each brain 
region selected a priori (vAI, amygdala, and vmPFC) for activation an
alyses and for each pair of brain regions (vAI-amygdala, vmPFC- 
amygdala, and vmPFC-vAI) for connectivity analyses. For associations 
between avoidance and dorsal anterior insula activation to fearful versus 
neutral faces and for associations between neural activation to threat 
and anxiety symptom severity, please see the Supplemental Material. 

All analyses used an alpha of 0.05 and were conducted in R (R Core 
Team, 2021). Across measures, values more extreme than 3 standard 
deviations from the mean were excluded from analyses as outliers. Due 
to the preliminary nature of this work, we did not correct for multiple 
comparisons. For whole-brain voxel-wise analyses, please see the Sup
plemental Material. Eleven participants were excluded from analyses 
involving fMRI data because >15 % of their data would need to be 
regressed out due to motion outliers as determined by framewise 
displacement (n = 3), because their in-scanner mean absolute trans
lational motion in any of the 6 rigid directions was above 5 mm in either 
run of the fMRI task (n = 6), or because visual inspection of the data 
revealed extreme motion slice artifacts (n = 2; resulting n for analyses 
using neuroimaging data = 65). Participants who were excluded from 
fMRI analyses did not differ from included participants on age, sex, or 
anxiety (ps ≥ .430). See the Supplemental Material for sensitivity ana
lyses with distinct motion criteria (Table S2). In addition, data were 
excluded from relevant analyses for values >3 standard deviations from 
the mean in neural activation or connectivity to fearful versus neutral 
faces: left vAI activation (n = 1), left and right amygdala activation (n =
1), left vmPFC activation (n = 1), right vmPFC activation (n = 2), right 
vAI-right amygdala connectivity (n = 1), right vAI-left amygdala con
nectivity (n = 1), left vAI- left and right amygdala connectivity (n = 2), 
bilateral vmPFC-amygdala connectivity (n = 1), bilateral vmPFC-right 
vAI connectivity (n = 3), and bilateral vmPFC-left vAI connectivity (n 
= 1). 

4. Results 

4.1. Comparing metrics of avoidance of threat 

Child-reported anxiety symptom severity was significantly positively 
correlated with clinician-rated avoidance, r(72) = 0.33, p = .004, such 
that children who reported higher levels of anxiety had greater clinician- 
rated avoidance. By contrast, child-reported anxiety symptom severity 
was not significantly associated with laboratory-based avoidance, r(73) 
= − 0.18, p = .122. Clinician-rated avoidance was not significantly 

Fig. 1. The Yale Interactive Kinetic Environment Software (YIKES) Task. 
During the YIKES task, participants' images are dynamically embedded in a virtual environment on a large television screen using motion sensing software. Par
ticipants physically move from side to side in front of the television screen to catch virtual falling targets for points. Throughout the task, pairs of task-irrelevant face 
stimuli (one angry, one neutral) are presented on either side of the virtual environment. Adapted with permission from “Using Motion Tracking to Measure Avoidance 
in Children and Adults: Psychometric Properties, Associations with Clinical Characteristics, and Treatment-Related Change” by E. R. Lebowitz & B. François, 2018, 
Behavior Therapy, 49(6), p. 853–865. 
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correlated with laboratory-based avoidance, r(73) = − 0.19, p = .103 
(Fig. S1 in Supplemental Material). 

4.2. Relating neural activation to fearful versus neutral faces and 
avoidance of threat 

4.2.1. Insula activation to fearful versus neutral faces 
Laboratory-based avoidance was significantly, positively associated 

with right vAI activation to fearful versus neutral faces (b = 0.02, SE =
0.01, β = 0.28, t(59) = 2.24, p = .029; Fig. 2a.). Laboratory-based 
avoidance was not significantly associated with left vAI activation to 
fearful versus neutral faces (b = 0.01, SE = 0.01, β = 0.20, t(59) = 1.62, 
p = .110). Conversely, clinician-rated avoidance was significantly, 
negatively associated with right (b = − 1.20, SE = 0.58, β = − 0.27, t(58) 
= − 2.10, p = .041) and left (b = − 1.35, SE = 0.52, β = − 0.32, t(58) =
− 2.61, p = .012) vAI activation to fearful versus neutral faces (Fig. 2b.). 

4.2.2. Amygdala activation 
Laboratory-based avoidance was not significantly associated with 

right amygdala activation to fearful versus neutral faces (b = − 0.01, SE 
= 0.02, β = − 0.09, t(57) = − 0.71, p = .484); however, there was a close 
trending, positive association between clinician-rated avoidance and 
right amygdala activation to fearful versus neutral faces (b = 2.22, SE =
1.12, β = 0.25, t(56) = 1.97, p = .053). Left amygdala activation to 
fearful versus neutral faces was not significantly associated with either 
avoidance measure (laboratory-based: b = 0.02, SE = 0.01, β = 0.17, t 
(58) = 1.30, p = .199; clinician-rated: b = − 0.31, SE = 0.89, β = − 0.05, t 
(57) = − 0.36, p = .724). 

4.2.3. Ventromedial prefrontal cortex activation 
Neither laboratory-based nor clinician-rated avoidance was signifi

cantly associated with right or left vmPFC activation to fearful versus 
neutral faces (ps ≥ .571). 

4.3. Relating functional connectivity and avoidance of threat 

4.3.1. Ventral anterior insula – amygdala functional connectivity 
Functional connectivity to fearful versus neutral faces between the 

vAI and amygdala was not significantly associated with laboratory- 
based avoidance (ps ≥ .410). However, left vAI-right amygdala func
tional connectivity to fearful versus neutral faces was significantly, 
negatively associated with clinician-rated avoidance (b = − 0.60, SE =
0.26, β = − 0.30, t(56) = − 2.30, p = .025; Fig. 3). Left vAI-left amygdala 
and right vAI-amygdala (left and right) connectivity to fearful versus 
neutral faces were not significantly associated with clinician-rated 
avoidance (ps ≥ .282). 

4.3.2. Ventromedial prefrontal cortex – amygdala functional connectivity 
Laboratory-based avoidance was not significantly associated with 

bilateral vmPFC connectivity with either the right or left amygdala (ps ≥
.787). Conversely, bilateral vmPFC-right amygdala functional connec
tivity to fearful versus neutral faces was significantly, negatively asso
ciated with clinician-rated avoidance (b = − 0.42, SE = 0.18, β = − 0.30, t 
(56) = − 2.36, p = .022; Fig. 4). Clinician-rated avoidance was not 
significantly associated with bilateral vmPFC-left amygdala connectivity 
to fearful versus neutral faces (p = .268). 

4.3.3. Ventromedial prefrontal cortex – insula functional connectivity 
Neither avoidance measure was significantly associated with vmPFC- 

vAI functional connectivity to fearful versus neutral faces (ps ≥ .200). 

5. Discussion 

The current study takes a multimodal approach to begin to elucidate 
associations between neural reactivity to and avoidance of threat in 
pediatric anxiety disorders. Findings revealed significant associations 
between neural reactivity to fearful versus neutral face stimuli and 
behavioral avoidance; however, the patterns that emerged were distinct 
for laboratory-based versus clinician-rated measures of avoidance. 
Laboratory-based avoidance was positively associated with right insula 
reactivity to fearful versus neutral faces, whereas clinician-rated 
avoidance was negatively associated with left and right insula reac
tivity to fearful versus neutral faces. Distinct patterns also emerged for 
functional connectivity among key regions involved in avoidance. Spe
cifically, clinician-rated avoidance was significantly, negatively associ
ated with left vAI-right amygdala and bilateral vmPFC-right amygdala 
functional connectivity to fearful versus neutral faces; by contrast, 
laboratory-based avoidance was not significantly associated with func
tional connectivity between these regions. These distinct patterns of 
association between avoidance and neural reactivity to fearful versus 
neutral faces may help to untangle the nature of threat responsivity and 
specific components of avoidance in youth anxiety. Taken together, 
these results shed light on the neural underpinnings of key dimensions of 
avoidance. 

Key differences in the type of threat involved in each of the two 
avoidance measures may help to explain this unique pattern of results. 
The laboratory task involves a continuously present, immediately 
proximal threat. By contrast, the clinician-rated measure, which draws 
heavily upon child and parent conscious awareness and explicit recall of 
a child's avoidance of future potential threats, is more likely to capture 
avoidance behaviors that involve anticipatory behaviors to avoid a 
possible future threat. The proximity of the threat may impact the dif
ferential pattern of results seen across measures of avoidance. In non- 

Fig. 2. Associations between right ventral anterior insula (vAI) reactivity to fearful versus neutral faces and both laboratory-based and clinician-rated avoidance. 
(A) Right vAI reactivity to fearful versus neutral faces was significantly, positively associated with laboratory-based avoidance. (B) By contrast, right vAI reactivity to 
fearful versus neutral faces was significantly, negatively associated with clinician-rated avoidance. 
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anxious samples, insula activation has been found to increase as the 
proximity of a threat increases (Wendt et al., 2017). Thus, the distinct 
associations with insula activation may reflect differences between 
avoidance of an immediately proximal threat during the laboratory task 
compared to the more anticipatory form of future threat captured by the 
clinician rating. 

The operationalization of avoidance using explicit recall may also 
help to explain our connectivity findings. Potentially consistent with our 
finding of a negative association between amygdala-vmPFC connectivity 
to threat and clinician-rated avoidance, previous research has found that 
parent- and child-reported avoidance of trauma-related triggers is 
negatively associated with amygdala-medial PFC connectivity in the 
context of pediatric post-traumatic stress disorder (Wolf and Herringa, 
2016). Moreover, in line with the observed negative association between 
insula-amygdala connectivity and clinician-rated avoidance, young 
adults reporting greater social inhibition (i.e., avoidance of social situ
ations and withdrawal from unfamiliar people) have been found to show 

reduced insula-amygdala connectivity (Blackford et al., 2014). Thus, our 
findings align with previous research finding an association between 
explicit reports of avoidance behavior (here indexed by our clinician 
rating) and functional connectivity between key brain regions involved 
in avoidance. 

While these distinct associations between neural reactivity to threat 
and laboratory-based versus clinician-rated avoidance may help to 
elucidate the distinct components of avoidance captured by these two 
metrics, an alternative explanation of these discrepant findings relates to 
the lack of coherence across modalities. Of note, the laboratory- and 
clinician-based measures of avoidance were not significantly correlated 
with one another in the current sample, a finding that replicates recent 
research in a separate sample (Kitt et al., 2022). Importantly, self- 
reported measures of clinically significant constructs often show little 
coherence with laboratory-based measures aiming to capture the same 
construct (e.g., Cyders and Coskunpinar, 2011; Krypotos et al., 2018). 
This lack of coherence across measures could indicate that these two 

Fig. 3. Association between left vAI-right amygdala functional connectivity to fearful versus neutral faces and clinician-rated avoidance. 
Left vAI-right amygdala functional connectivity to fearful versus neutral faces was significantly, negatively associated with clinician-rated avoidance. 

Fig. 4. Association between bilateral vmPFC-right amygdala functional connectivity to fearful versus neutral faces and clinician-rated avoidance. 
Bilateral vmPFC-right amygdala functional connectivity to fearful versus neutral faces was significantly, negatively associated with clinician-rated avoidance. 
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types of measures are capturing distinct components of the same 
construct, or it could indicate that the two measures are capturing two 
entirely distinct constructs (Cyders and Coskunpinar, 2011). Future 
research should continue to explore the degree to which these measures 
quantify the same underlying construct to ensure the validity of our 
phenotypes of avoidance. 

Differences in informant across measures could also contribute to the 
distinct patterns of associations between neural and behavioral 
responding observed in the current study. Whereas the laboratory-based 
measure relies solely on the child's behavior, the clinician rating of real- 
world avoidance integrates both the child's and parent's reports into a 
single measure of avoidance. Previous research emphasizes the impor
tance of considering both child and parent reports for reliable, valid 
assessments of children's behavior (Haynes and O'Brien, 2000; White
side et al., 2013). The current study's multimodal approach provides a 
nuanced investigation into neural correlates of two commonly used 
measures of behavioral avoidance across multiple informants. Future 
research incorporating additional measures of avoidance would further 
strengthen our understanding of children's neural and behavioral re
sponses to threat. For example, daily diaries or ecological momentary 
assessment could provide additional perspectives about children's real- 
world avoidance behaviors outside the laboratory (Price et al., 2016). 
Incorporating additional measures capitalizing on innovative advances 
in event sampling methodologies could help to further explicate the 
nuances in types of avoidance exhibited by children with anxiety dis
orders in their daily lives. 

Of note, while we discuss these results in terms of threat responsivity, 
it is important to consider how salience detection may impact these 
results. Our fMRI task uses face stimuli, which are linked with both 
threat responding and salience detection (Markett et al., 2020; Santos 
et al., 2011). It is likely that the associations detected in this study were 
influenced both by threat and salience, and it is difficult to distinguish 
between effects of threat versus salience in the present task design. One 
possible approach to begin to examine this question utilizes the specific 
contrasts between stimuli in the fMRI task. In the current study, we have 
attempted to isolate the effects of threat by examining the contrast be
tween neural reactivity to fearful versus neutral faces. Examining the 
contrast between all face stimuli and baseline could reflect the effects of 
salience more broadly. In the current study, the pattern of results in our 
primary analyses is specific to the fearful versus neutral faces contrast 
(see Table S1 in the Supplemental Material). Thus, while both threat and 
saliency are likely to contribute to the brain-behavior relations observed 
in this study, some initial evidence suggests that these associations may 
be driven more by threat, in line with our hypotheses. We acknowledge 
that future work will be important to distinguish between the effects of 
threat versus salience in understanding neural mechanisms associated 
with different forms of avoidance in pediatric anxiety. 

It is important to consider these results in the context of several 
limitations. First, the restricted range of our sample limits the ability to 
draw conclusions about these associations across children with a 
broader range of symptomatology. Our sample of treatment-seeking 
children with diagnosed anxiety disorders allowed us to examine spe
cific questions regarding the association between neural reactivity to 
and avoidance of threat within this clinically anxious sample. However, 
in future studies, it will be important to examine these associations 
across children with a broader range of symptomatology, including 
children with sub-threshold anxiety and children without anxiety 
symptoms, to enhance the generalizability of these results. Second, it is 
important to interpret these results in the context of the limited diversity 
of our sample, which may limit the generalizability of findings. The 
majority of child participants in our sample identified as White and not 
Hispanic or Latino, such that our sample does not reflect the local de
mographic distribution in our recruitment area. Moreover, although we 
aimed to collect a sample that was balanced across male and female 
child participants, our final sample had a higher proportion of male 
child participants. Particularly given patterns of limited inclusion of 

historically underrepresented populations in clinical research (Pina 
et al., 2019), it is crucial that future studies examine these results in 
more diverse samples to test the generalizability of our current findings. 
Third, the motion criterion that we employed in the current study was 
relatively lenient (5 mm mean absolute translational motion). In setting 
the motion criterion for the current study, we considered the trade-offs 
between threshold stringency and the amount of data exclusion. Given 
previous work showing that anxious children show elevated head mo
tion during fMRI scans (e.g., Price et al., 2014) and the modest nature of 
our sample size, we chose to maintain the 5 mm mean absolute trans
lational motion criterion that we (Kitt et al., 2023) and others (e.g., 
Butterfield et al., 2019; Price et al., 2014) have employed in prior work. 
We note that future research with larger samples will be important for 
testing the extent to which these findings are robust across more strin
gent motion thresholds. 

In conclusion, the results of this study indicate specific patterns of 
association between neural reactivity to and avoidance of threat in 
children with anxiety disorders across both the laboratory and children's 
daily lives. This study's multimodal approach presents an important 
early step towards bridging the gap between neural findings and clinical 
observations and highlights the importance of considering multiple 
units of analysis when examining complex constructs such as avoidance. 
Considering the central role of avoidance as a target of first-line psy
chosocial treatments for pediatric anxiety disorders, further under
standing individual differences in distinct types of avoidance behaviors 
could mark an important step towards greater personalization of treat
ment. Continuing to explore these associations will provide essential 
insight into the processes by which neural processing of threat translates 
into maladaptive behavioral outcomes and thus may ultimately inform 
optimized treatments for pediatric anxiety disorders. 
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