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Person-centered analyses reveal that
developmental adversity at moderate
levels and neural threat/safety
discrimination are associated with lower
anxiety in early adulthood

Check for updates

Lucinda M. Sisk 1 , Taylor J. Keding 1, Sonia Ruiz1, Paola Odriozola 1, Sahana Kribakaran1,2,
Emily M. Cohodes1, Sarah McCauley1, Sadie J. Zacharek3, Hopewell R. Hodges4, Jason T. Haberman1,
Jasmyne C. Pierre5, Camila Caballero1, Arielle Baskin-Sommers 1,6 & Dylan G. Gee 1,6

Parsing heterogeneity in the nature of adversity exposure and neurobiological functioning may
facilitate better understanding of how adversity shapes individual variation in risk for and resilience
against anxiety. One putative mechanism linking adversity exposure with anxiety is disrupted threat
and safety learning. Here, we applied a person-centered approach (latent profile analysis) to
characterize patterns of adversity exposure at specific developmental stages and threat/safety
discrimination in corticolimbic circuitry in 120 young adults. We then compared how the resultant
profiles differed in anxiety symptoms. Three latent profiles emerged: (1) a group with lower lifetime
adversity, higher neural activation to threat, and lower neural activation to safety; (2) a group with
moderate adversity during middle childhood and adolescence, lower neural activation to threat, and
higher neural activation to safety; and (3) a group with higher lifetime adversity exposure and minimal
neural activation to both threat and safety. Individuals in the second profile had lower anxiety than the
other profiles. These findings demonstrate how variability in within-person combinations of adversity
exposure and neural threat/safety discrimination can differentially relate to anxiety, and suggest that
for some individuals, moderate adversity exposure during middle childhood and adolescence could
be associated with processes that foster resilience to future anxiety.

Exposure to adversity during development can shape neural and behavioral
maturation, and increases risk for later mental health problems1,2. Anxiety
disorders have been consistently linked with exposure to adversity during
development, and youthwho experience one ormore adverse exposures are
40%more likely to develop an anxiety disorder by adulthood3. Nonetheless,
a majority of individuals demonstrate resilience against mental health
problems following adversity exposure during development4. This hetero-
geneity in outcomes may reflect—among other psychosocial and systemic
factors5—variability in both the nature of adversity exposure and in brain

and behavioral development6–9. In particular, the developmental timing of
adversity exposure likely informs its impacts, as maturing neural circuits
fluctuate in plasticity across their respective developmental trajectories,
potentially rendering both circuits and the cognitive and emotional pro-
cesses they support differentially sensitive to environmental exposures8,10–12.
Parsing heterogeneity in features of adversity exposure, such as develop-
mental timing, and variation in neurobehavioral processes may elucidate
co-occurring patterns of exposure and functioning that predict risk for and
resilience against future mental health problems.
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Threat and safety learning play a central role in anxiety disorders, and
disruptions in these processes and in supporting neural circuitry are evident
following adversity exposure during development. Rodent models of threat
and safety learning and adversity exposure show that the developmental
timing of adversity exposure may differentially shape threat and safety
learning and related behavior13. For instance, although exposure to adversity
during development is generally associated with increased anxiety-like
behavior in adulthood in rodent models14–18, effects of adversity on threat
and safety learning vary as a function of age of exposure. Adult female mice
exposed to adversity during the neonatal period displayed impaired threat
expression19, while adult mice exposed to adversity during pre-adolescence
show delayed discrimination between threat and safety and reduced ability
to inhibit fear in the presence of a safety cue15. Mice exposed to adversity
during adolescence showed altered neuronal firing patterns in the prelimbic
cortex in response to threat in adulthood20. However, how the develop-
mental timing of adversity exposure affects later functioning may also vary
depending on the nature of the stressful exposure. As one example, chronic
mild stress during the juvenile and adolescent stages of development may
confer greater resilience to future stressors in adulthood21–26. While the
mechanisms by which such putative resilience might relate to
threat and safety learning remain unclear, findings from rodent research
highlight the complex interplay between dimensions of adversity, such as
developmental timing, and alterations to associative learning processes that
may differentially confer greater risk for or resilience against future
psychopathology.

Evidence from studies examining threat and safety learning in child,
adolescent, and adult human samples suggests that exposure to adversity
during development is associated with reduced discrimination between
threat and safety cues in aversive learning tasks27,28. Lack of discrimination
between threat and safety has been observed behaviorally29, neurally30,
and physiologically31,32. Research focusing on threat in particular has
identified blunted responses to learned threat cues in individuals exposed
to adversity during development30,32–34; however, heightened responses
to threat following adversity exposure during development have also
been reported, primarily in studies employing threat stimuli with emotional
content35–37. Individuals with adversity exposure may also exhibit
heightened fear responses to safety cues38,39, which may be theoretically
consistent with an adversity-related reduction in threat/safety discrimina-
tion. While few studies have examined the role of developmental timing
of adversity in predicting neural response to threat or safety, convergent
evidence implicates early childhood and late adolescence as potential
sensitive windows during which adversity exposure may shape
corticolimbic responses to threatening images through adulthood40,41.
Clarifying how the timing of adversity exposuremight differentially relate to
changes in threat/safety discrimination may provide further insight into
adversity-related shifts in associative learning and links with future mental
health.

The hippocampus, amygdala, dorsal anterior cingulate cortex (dACC),
and ventromedial prefrontal cortex (vmPFC) comprise the primary neural
regions canonically involved in threat and safety learning42, as well as in
anxiety43. Neural responses within regions comprising this circuit—for
instance, activation during affective (e.g., threat, reward) learning44,45 and
connectivity during rest46—can predict longitudinal emergence of anxiety,
andmay play an integral role in both short- and long-term threat encoding
and extinction47. These regions are also among the most sensitive to the
effects of exposure to adversity during development47–49. Further, regions
comprising this corticolimbic circuit are known to develop along different
trajectories that mature nonlinearly and reach adult-like states at different
times during development48. Specifically, the hippocampus and amygdala
develop relatively early49, while prefrontal cortical regions undergo more
protracted maturation, demonstrating enhanced neuroplasticity during
adolescence50–53. Structural connections between these regions are thought
to reach maturation later still. For example, the uncinate fasciculus, a white
matter tract structurally connecting prefrontal and limbic regions, exhibits
ongoing development into adulthood54. Given the unique developmental

timelines of this circuitry, the ages at which adversity exposure occurs may
inform distinct impacts on corticolimbic circuitry and threat and safety
learning, contributing to cascading effects on mental health into
adulthood8,55,56. Further, given developmental shifts in threat and safety
learning and responding27,57–59, parsing how the developmental timing
of adversity exposure relates to region-specific neural discrimination
between threat and safety in adulthood could provide insight into how
adversity exposure may shape both developing neural circuitry and the
neural computations it supports. Delineating how co-occurring patterns of
adversity and threat/safety discrimination relate to variability in mental
health is important for understanding why some individuals––but not
others––develop mental health disorders following adversity exposure.

Person-centered approachesmay critically aid in parsing heterogeneity
across multiple measures by identifying co-occurring patterns that char-
acterize groups of individuals60–62. Latent profile analysis (LPA) is one such
approach, characterizing ‘profiles’ of individuals based on shared patterns
across a set of continuous variables63–65. In the context of threat and safety
learning and adversity exposure, LPA facilitates the identification of profiles
characterized by both brain and adversity measures and may more readily
elucidate variation in associations between neural activation and adversity
than more widely used univariate approaches. In the present study, we
leveraged LPA to identify shared patterns of adversity exposure across
development and neural discrimination in corticolimbic regions—specifi-
cally, bilateral hippocampus, amygdala, dACC, and regions of the vmPFC—
between threat and safety cues during an aversive learning task. Following
profile identification, we tested whether the resulting profiles differed in
mental health symptoms (i.e., anxiety symptoms, trauma-related symp-
toms, and externalizing symptoms).Wehypothesized that the LPA solution
would include a profile characterized by blunted amygdala activation to
threat cues, weaker neural discrimination between threat and safety, and
greater history of adversity exposure during early childhood27–32,40. We
further hypothesized that individuals in this profile would display higher
levels of anxiety symptoms3,66. In addition, we hypothesized that another
profile would be characterized by lower levels of adversity exposure across
development and stronger discrimination between threat and safety and
that individuals in this profile would display lower levels of anxiety. Given
that this study is broadly exploratory and presents a novel application of
LPA, fitting the model on both adversity exposure at four developmental
stages and neural threat and safety discrimination data, we did not have
specific hypotheses regarding additional combinations of these variables
and anxiety symptoms.

Methods
Participants
Participants were 120 adults between the ages of 18 and 30 recruited from
the greater New Haven, CT community as part of an ongoing study on
threat and safety learning in the context of anxiety disorders. For detailed
demographic information, see Table 1. Participants were right-handed, able
to fluently communicate in English, and free from contraindications for
MRI scanning (e.g., no braces,metal implants).Additional exclusion criteria
included (1) history of concussion or head injury, (2) history of neurological
disorder or chronic medical illness, (3) lifetime history of psychotic dis-
orders, conduct disorder, autism spectrum disorder, bipolar disorder, non-
alcohol ornon-tobaccousedisorder, primary current diagnosis of attention-
deficit/hyperactivity disorder or major depressive disorder, (4) current
tobacco or alcohol use disorder, (5) suicidal ideation with acute risk, (6)
current use of psychotropic medication, (7) colorblindness, (8) visual
impairment that cannot be corrected with lenses, and (9) hearing impair-
ment. In order to isolate variation related specifically to anxiety, the broader
study restricted participation to either individuals without major psycho-
pathology or individuals with an anxiety disorder but without significant
externalizing psychopathology. The institutional review board at Yale
University approved all study procedures. Participants provided informed
written consent to participate in the study, which entailed two visits. Par-
ticipants completed theDimensional Inventory of Stress andTraumaacross
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Table 1 | Demographic information

Data not included in symptom analyses (n = 15) Data included in symptom analyses (n = 105) Total (n = 120)

Age at scan

Mean (SD) 22.090 (2.877) 23.011 (3.177) 22.896 (3.145)

Range 18.062–27.349 18.136–30.281 18.062–30.281

Age at DISTAL

Mean (SD) 22.005 (2.865) 22.952 (3.166) 22.834 (3.134)

Range 18.048–27.193 18.125–30.109 18.048–30.109

Sex at birth

Female 10 (66.7%) 69 (65.7%) 79 (65.8%)

Male 5 (33.3%) 36 (34.3%) 41 (34.2%)

Gender identity

Cisgender female 10 (66.7%) 68 (65.4%) 78 (65.5%)

Cisgender male 5 (33.3%) 35 (33.7%) 40 (33.6%)

Transgender female 0 (0.0%) 0 (0.0%) 0 (0.0%)

Transgender male 0 (0.0%) 1 (1.0%) 1 (0.8%)

Missing data 0 1 1

Education

High school 2 (13.3%) 14 (13.3%) 16 (13.3%)

College 12 (80.0%) 69 (65.7%) 81 (67.5%)

Graduate school 1 (6.7%) 22 (21.0%) 23 (19.2%)

Total Household Income

<$5000 0 (0.0%) 5 (4.8%) 5 (4.5%)

$5000-$11,999 0 (0.0%) 7 (6.7%) 7 (6.4%)

$12,000-$14,999 0 (0.0%) 5 (4.8%) 5 (4.5%)

$15,000-$24,999 2 (40.0%) 8 (7.6%) 10 (9.1%)

$25,000-$34,999 0 (0.0%) 10 (9.5%) 10 (9.1%)

$35,000-$49,999 0 (0.0%) 9 (8.6%) 9 (8.2%)

$50,000-$74,999 1 (20.0%) 24 (22.9%) 25 (22.7%)

$75,000-$99,999 0 (0.0%) 5 (4.8%) 5 (4.5%)

$100,000+ 2 (40.0%) 32 (30.5%) 34 (30.9%)

Missing data 10 0 10

Race and ethnicity

Asian 0 (0.0%) 26 (25.0%) 26 (22.0%)

Black or African-American 3 (21.4%) 12 (11.5%) 15 (12.7%)

Hispanic or Latinx 1 (7.1%) 12 (11.5%) 13 (11.0%)

Multiracial 1 (7.1%) 7 (6.7%) 8 (6.8%)

Non-Hispanic White 9 (64.3%) 46 (44.2%) 55 (46.6%)

Prefer not to answer 0 (0.0%) 1 (1.0%) 1 (0.8%)

Missing data 1 1 2

SCAARED anxiety symptoms

Mean (SD) 23.300 (18.726) 26.829 (15.338) 26.522 (15.598)

Range 2.000–63.000 3.000–72.000 2.000–72.000

Missing data 5 0 5

Site

Brain Imaging Center 7 (46.7%) 37 (35.2%) 44 (36.7%)

Magnetic Resonance Research Center 8 (53.3%) 68 (64.8%) 76 (63.3%)

Demographic information for participant sample stratified by whether participants were included in symptom analyses. DISTAL Dimensional Inventory of Stress and Trauma Across the Lifespan,
SCAARED Screen for Adult Anxiety Related Disorders.
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the Lifespan (DISTAL)67 interview as well as self-reported questionnaires
assessing demographic information and mental health symptoms during
thefirst visit. Interviewdata and self-report questionnaireswere entered into
a secure online database68. Participants also completed anMRI scan session
with sequences including anatomical scans and functional imaging scans
during the second visit. Participants were financially compensated for their
time and participation at each visit. Analyses conducted in the present study
were not preregistered.

Assessment of adversity exposure
Participants completed the DISTAL interview67, which is broadly based on
the structure of the UCLA PTSD Reaction Index69 and is designed to assess
key dimensions of adverse exposures including age of exposure67. In the
screening portion of the DISTAL, participants were asked about their
exposure to 24 distinct types of adverse events. For each type of adverse
event that was endorsed in the screening portion of the interview, partici-
pants were asked to report on the cumulative list of ages at which they
experienced that type of adversity (possible ages of exposure ranged from 0
to30, or 0 throughparticipant age at the timeof the study, if their current age
was less than 30). If multiple events of the same type were reported, age of
exposure at each event was recorded. Interview data underwent extensive
quality assurance and were double-entered by a team of trained research
assistants, overseen by a clinical doctoral student and the principal
investigator67. Following quality assurance, exposures to adversity were
summed by individual to derive a total count of adverse events at each year
of age from 0 through the participant’s age at the time of the study. Sub-
sequently, these data were summed to produce four separate variables
representing counts of adverse events experienced within four develop-
mental stages: early childhood (ages 0–5), middle childhood (ages 6–12),
adolescence (ages 13–17), and adulthood (ages 18–30, or through current
age), consistent with prior work70. Any reported events that did not include
information on age of exposure were excluded from the analysis (n = 30
events; 1.52% of total reported events).

Clinical symptoms
Participants completed questionnaires assessing anxiety-related, trauma-
related, and externalizing symptoms. Specifically, anxiety symptoms were
evaluated using the total score from the Screen for Adult Anxiety Related
Disorders (SCAARED)71. To determine the extent to which any findings
might be specific to anxiety, we examined associations with trauma-related
symptoms and externalizing symptoms as well. Trauma-related symptoms
were assessed using the total score from the Trauma Symptoms Checklist
(TSC-40)72. Externalizing symptoms were assessed via the Externalizing
Problems subscale of the Adult Self Report scale73.

MRI scanning
Participants were scanned on 3T Siemens Magnetom Prisma scanners
(Siemens, Erlangen, Germany) using a 32-channel head coil at either the
MagneticResonanceResearchCenter (n = 76;NewHaven,CT) or theBrain
Imaging Center (n = 44; New Haven, CT). Both scanning centers used
Siemens software version VE11C. Scanning sequences were based on those
used in the Adolescent Brain Cognitive Development Study74. A whole-
brain high-resolution T1-weighted anatomical scan with magnetization-
prepared rapid acquisition gradient echo (MPRAGE; 1070 ms TI, 2500ms
TR; 2.9msTE; 8°flip angle; 256mmfield of view (FoV); 176 slices in sagittal
plane; 2× parallel imaging; 1.0 × 1.0 × 1.0mm resolution) was collected. For
the threat and safety learning task, high spatial and temporal resolution
multiband echo planar imaging (EPI) fMRI scans were collected with fast
integrated distortion correction across a total of five runs. Sixty axial slices
covering the whole brain were imaged using a T2*-weighted EPI sequence
(800ms TR; 30ms TE; 52° flip angle; 216mm FoV; 90 × 90 matrix;
2.4 × 2.4 × 2.4mm resolution; 6 multiband acceleration factor with inter-
leaved acquisition). The first 8 volumes for each task run were discarded for
longitudinalmagnetization to reach equilibrium. To permit accurate spatial
distortion correction, two spin echoEPI scanswithopposite phase encoding
directionswere collected prior to each blockof functional scans, perHuman
Connectome Project (HCP) guidelines75.

Task design
The threat and safety learning task employed in this study has been pre-
viously described76–78. All conditioned stimuli used in the task were geo-
metric shapes of different colors, and the unconditioned stimulus (US) was
an aversive metallic white noise79 delivered at 95 to 100 decibels through
MRI-safe noise-cancelling headphones. Briefly, the task involved five runs:
acquisition, testing (two runs), extinction, and reversal (depicted in Fig. 1).
The acquisition phase consisted of 20 trials of the threat cue (CS+), which
were reinforced with the unconditioned stimulus (US) 50% of the time (i.e.,
10 reinforced and 10 non-reinforced threat cue trials) and 10 trials of the
safety cue, which was never paired with the US. The acquisition phase
utilized a block format, such that all threat cues were presented sequentially,
as were all safety cues. The testing phase was split into two separate but
consecutive runs (~7min each) to reduce excessive motion that may occur
during longer fMRI scans. Across both runs of the testing phase, a total of 12
threat cues were paired with the US, 12 threat cues were not paired with the
US, and 12 safety cues were presented. Two additional conditions were
included in the testing phase of the task: a “safety compound” condition in
which the threat and safety cues were presented simultaneously to test
whether the safety cue transferred to reduce fear to the threat cue, and a
“novel compound” condition in which the threat cue and a novel cue were

Fig. 1 | Threat and safety learning task design.
Figure included with permission from a previous
publication76. A During the acquisition phase of the
task, participants were exposed to 10 threat cues
paired with the unconditioned stimulus (US), 10
threat cues that were not paired with the US, and 10
trials of the safety cue. B The two testing phases of
the task each included 6 threat trials paired with the
US, 6 threat trials not paired with the US, 6 trials of
the safety cue, 6 trials of the safety compound, and 6
trials of the novel compound (i.e., a total of 12 trials
for each condition across both runs).CExample trial
structure: a fixation cross is presented for 10 s, fol-
lowed by presentation of the cue for 1.5 s, followed
by 0.5 s in which a white dot appears at the center of
the shape and participants are instructed to press a
button.
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shown simultaneously to rule out effects of external inhibition80. Neither the
safety compound nor novel compound condition was analyzed in the
present study. The testing phase utilized an event-related design, and trial
order was fully randomized across 6 counterbalanced versions. During
every run, each cuewas presented for 1500ms and after 1000ms awhite dot
appeared in the center of the shape (presented for 500ms). Participantswere
instructed to press a button when the dot appeared on each trial. Partici-
pants were informed that pressing the buttonwas simply to ensure that they
were paying attention during the task. For reinforced trials of the threat cue,
the onset of the aversive noise andpresentation of the dot in the center of the
shape were fully paired, such that they onset, lasted 500ms, and terminated
at the same time. A fixed inter-trial interval of 10 s separated each trial to
allow for stabilization of the skin conductance response (SCR) signal. The
assignment of the three different shapes used to cue the three stimulus types
(threat, safety, or novel cue) was counterbalanced across participants.
Counterbalanced task version did not relate to any variables of interest or
latent profile assignment (see SupplementaryResults). Additional details on
the extinction and reversal runs of the task can be found in the original
paper77. In the present study, we examined non-reinforced threat cues and
safety cues during the two testing runs in fMRI analyses, andnon-reinforced
threat cues and safety cues during the acquisition block as well as during the
two testing runs to evaluate cue learning via SCR.Details on SCRprocessing
and analyses indicating that participants successfully learned the task cues
can be found in the Supplementary Methods and Results.

fMRI preprocessing
fMRI data were converted to Brain Imaging Data Structure (BIDS)81 using
heudiconv (https://github.com/nipy/heudiconv) and subsequently pre-
processed using the HCP minimal preprocessing pipeline75 using the HCP
Pipelines BIDS app (https://github.com/BIDS-Apps/HCPPipelines) ver-
sion 3.17.14. This pipeline has been described in detail in previouswork76–78.
Briefly, preprocessing of task-based functional acquisitions involved gra-
dient distortion correction, EPI “fieldmap” preprocessing and distortion
correction, motion correction, nonlinear registration to the MNI template
(MNI 152, 2mm space), and grand-mean intensity normalization. The EPI
fMRI images were corrected using spin echo fieldmap EPI scans with
opposite phase encoding directions, resulting in opposite spatial distortion.
The two fieldmap images were aligned using nonlinear optimization to
estimate the distortion field and enable the removal of spatial and intensity
distortions from the fMRI images via the HCP minimal preprocessing
pipeline82–84.

fMRI first level analysis
All individual-level fMRI analyses were conducted with the FMRIB’s
Software Library (FSL) version 6.0.7.9. For the first-level FEAT
analysis, predictors for all task conditions (threat cue, safety cue,
safety compound, and novel compound conditions; with inter-trial
intervals treated as baseline) were convolved with a double-gamma
canonical hemodynamic response function (HRF). To minimize the
effects of motion on task-related results, each participant’s FEAT
design matrix had translational and rotational motion parameters,
resulting from FSL’s MCFLIRT85, added as nuisance regressors.
Additionally, FSL’s fsl_motion_outliers function was used to detect
fMRI frames that were corrupted by excessive motion and were
therefore less reliable; outliers were determined using 1.5 times the
interquartile range above the upper quartile86 and the mean frame-
wise displacement (FD) was calculated87. The resulting outlier
frame regressors (encoded as one-hot vectors indicating the presence
or absence of an outlier) were then concatenated to the design
matrix. We chose to employ this approach rather than censoring
corrupted timepoints because regression of problematic timepoints
does not disrupt the temporal structure of the timeseries. Temporal
derivatives of all design matrix predictors were added as confound
terms to the GLM to account for slice-timing differences and
variability in the HRF delay across regions. Finally, timeseries were

high-pass filtered with a cutoff of 90 s (estimated for our specific task
design using FSL’s cutoffcalc function) to remove low frequency
artifacts and pre-whitened with FILM to correct for autocorrelations
in the timeseries.

Region of interest (ROI) extraction and covariate regression
Voxel-level parameter estimates produced in FSL from the first-level ana-
lyses of the first and second testing runs were averaged together using the
fslmaths command88 to yield estimates of average activation for the three
contrasts of interest (threat vs. baseline, safety vs. baseline, and threat vs.
safety). Global mean activation was computed per participant for each
contrast at the voxel level using the fslmaths command. Given the canonical
role of the vmPFC, dACC, hippocampus, and amygdala in threat and safety
learning and response89–91, we selected ROIs representing these key nodes to
submit to LPA. Specifically, we derived anatomical segmentations of the
bilateral hippocampus and amygdala from the Shen 368 atlas92, bilateral
ventromedial prefrontal regions from the symmetrical Mackey vmPFC
atlas93, and the bilateral dACC region from the Automated Anatomical
Labeling Atlas 394 as in previous work76,78. All ROIs were averaged across
hemispheres to increase model parsimony and because we did not have
specific hypotheses regarding lateralization.

Quality assessment and motion exclusion
Following preprocessing, all data were visually inspected for artifacts by a
highly trained team of research assistants. Subjects with task runs with
severe artifacts (e.g., severe motion slice, signal distortion, etc.) were
excluded from analysis. Given the well-documented impacts of motion on
fMRI signal95, we employed rigorous motion correction during FEAT first
level analysis, as previously described. In addition, we included mean fra-
mewise displacement across both task runs as a between-subjects
covariate96,97. Finally, we inspected overlap between areas with fMRI arti-
facts and ROIs. Mackey atlas nodes 14m, 24, 25, and 32 were included in
subsequent analyses, while nodes 11m, 14c, 14r, and 14rr were excluded
(across all participants) due to overlap with artifacts.

Data preparation and outlier removal
We employed LPA64,65 to identify person-centered profiles characterized by
shared patterns of adversity exposure across development and neural dis-
crimination between threat and safety cues. Prior to submitting adversity
and neural indicator variables to the LPA model, we regressed between-
subjects covariates from each measure. Specifically, from each of the four
adversity exposure variables (representing exposures in early childhood,
middle childhood, adolescence, and adulthood)we regressed age atDISTAL
interview and sex assigned at birth using a zero-inflated negative binomial
model implemented in statsmodels98. For neural data, we regressed esti-
mated total intracranial volume, site of fMRI scan acquisition, mean fra-
mewise displacement, mean whole-brain activation, and age at scan session
from each ROI’s activation using ordinary least squares (OLS) models
implemented in statsmodels98.Weperformed covariate regression fromROI
activation data separately for each contrast of interest (threat vs. baseline,
safety vs. baseline, and threat vs. safety). We chose to regress mean whole-
brain activation to isolate region-specific variation in activation while
controlling for global individual differences, and total intracranial volume to
account for both variability in head size and as a proxy for potential sex-
related differences99. Prior to fitting the LPA model, we tested for the pre-
sence of outliers in each variable (i.e., more than 3 standard deviations from
the median), and excluded participants with any data surpassing this
threshold (n = 11; original sample n = 131, final sample n = 120). Subse-
quently, we tested for multicollinearity among all adversity exposure and
neural indicator variables using the variance inflation factor (VIF). Acti-
vation in Mackey areas 14m and 32 were highly correlated, leading us to
average their activations and use this combined variable in subsequent
analyses. Following this step, VIFs for all variables were less than 5, indi-
cating that variables were not problematically multicollinear100. Finally, all
indicator variables were z-scored prior to submission to the LPA model.
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Latent profile analysis
Statistical analyseswere conducted inPython (version3.9)101, andR (version
4.4.2)102. A full list of python package versions can be found in the project
Github repository (seeData and Code Availability). LPAwas implemented
in the Python package StepMix103, a mixture modeling package that intro-
duces advanced features such as bias correction that have previously been
predominantlyunavailable inopen-source software.The followingvariables
were entered into theLPA: adversity count during early childhood, adversity
count during middle childhood, adversity count during adolescence,
adversity count during adulthood, hippocampal activationduring the threat
vs. safety contrast, amygdala activation during the threat vs. safety contrast,
vmPFC area 24 activation during the threat vs. safety contrast, vmPFC area
25 activation during the threat vs. safety contrast, vmPFC areas 32 and 14m
activation during the threat vs. safety contrast, and dACC activation during
the threat vs. safety contrast. LPAmodels treating all variables as continuous
with diagonal component covariance structures were fit across 1000 ran-
dom starts for 1 through 6 latent profiles, and information criteria were
retained for eachmodel fit and compared.We chose to limit the maximum
number of profiles to 6, as prior work suggests that with sufficient separa-
tion, the minimum expected sample per latent profile should be n = 20104.
Thus, with n = 120, themaximumnumber of profiles wewould be powered
to detect is 6. Models were fit using the three-step method, and profile
assignment was corrected using the Bolck, Croon, and Hagenaars (BCH)
method64,103,105. The optimal profile number was selected by comparing fit
based on information criteria. We employed the Bayesian Information
Criterion (BIC)106 and the Akaike Information Criterion (AIC)107, both of
which indicate better fit with values ranging closer to zero; and scaled
entropy, inwhichhigher values indicate higher classification confidence and
values above 0.8 are considered acceptable103,108. After selecting the optimal
profile solution based upon information criteria values, we confirmed a
superior fit for the chosen solution with k latent profiles relative to the
solution with k-1 profiles using 1000 iterations of a bootstrapped likelihood
ratio test109. Participants were assigned profile membership, and the cate-
gorical variable representing profile membership was used in subsequent
analyses with clinical symptoms. Finally, we ordered the profiles from least
to most cumulative adversity exposure for ease of interpretation. Post-hoc
tests for differences between profiles in adversity exposure across develop-
ment were evaluated using two-tailedMann–WhitneyU-Tests110, and False
Discovery Rate (FDR)111 correction was applied to account for multiple
comparisons (i.e., the three pairwise tests comparing each pair of profiles).
Differences between profiles in normally distributed data (e.g., neural
activation and clinical symptoms) were evaluated with pairwise Games-
Howell tests112. Differences in neural discrimination between threat and
safetywithinprofileswere evaluated relative to zerousing one-sample t-tests
and corrected for multiple comparisons using FDR correction. Post-hoc
testing was implemented in the pingouin Python package113.

Statistical power considerations
Following latent profile identification, we sought to confirm that we were
well-powered to identify the correct number of latent profiles in our sample.
As distance between profiles may be more important than sample size in
determining statistical power104,114,115, we indexed distance between profiles
using two approaches. First, in line with previous work115, we computed
pairwise Cohen’s d effect sizes between latent profiles for each variable
submitted to the LPAmodel.We then computed the absolute value of each
Cohen’s d value and averaged across each pairwise combination of latent
profiles to determine the overall distance (average Cohen’s d) between the
profiles115. Second, we computed a more recently proposed measure of
separation—the distance metric (Δ)104. Specifically, we again retained
Cohen’s d values representing the pairwise differences between profiles that
were computed during pairwise testing for each of the 10 indicator variables
submitted to the LPAmodel (exposure to adversity during early childhood,
exposure to adversity during middle childhood, exposure to adversity
during adolescence, exposure to adversity during adulthood, hippocampal
activation during the threat vs. safety contrast, amygdala activation during

the threat vs. safety contrast, vmPFC area 24 activation during the threat vs.
safety contrast, vmPFC area 25 activation during the threat vs. safety con-
trast, vmPFC areas 32 and 14m activation during the threat vs. safety
contrast, and dACC activation during the threat vs. safety contrast). We
then squared each Cohen’s d value and summed the squares together for
each pair of profiles (1 vs. 2, 1 vs. 3, 2 vs. 3).We computed the square root of
the sum of squares between each pair of profiles, and then averaged these
values together to obtain an overall estimate of distance between profiles.

Associations with clinical symptoms
Following profile assignment, we examined associations between profile
membership and measures of clinical symptoms. We used the Jarque–Bera
(JB) test116 to testwhether symptomvariablesmet assumptionsof normality.
None of the symptom measures (anxiety symptoms, trauma-related
symptoms, externalizing symptoms) met the assumption of normality;
thus, anxiety symptoms were transformed using a square-root transform
and trauma-related and externalizing symptoms were transformed using a
log transform. Transformations were chosen for each symptom variable
baseduponwhich transformation resultedmost closely in an approximately
normal distribution (i.e., JB>0.05). Next, transformed anxiety symptoms,
transformed trauma-related symptoms, and transformed externalizing
symptomswere evaluated as dependent variables in separateOLSmodels fit
using lm() in R102. Age at questionnaire completion, sex assigned at birth,
total household income, and years of education were included as covariates
in all models. We chose to include age at questionnaire completion and sex
assigned at birth as covariates in each model to adjust for potential age-
related differences in symptommeasures117 and given prior evidence of sex
differences in the effects of adversity on neurodevelopment and mental
health118,119. We included total household income and years of education as
proxies for socioeconomic status-related experiences that can impact brain
development120,121 and mental health3,119. Participants with missing data for
any covariates were excluded from symptom analyses (n = 15; Table 1).
Type III Sum of Squares ANOVA tables were then computed for each fit
OLS model to ascertain the effect of the categorical latent profile variable
relative to the grand mean122 using the car package in R123. We chose to
employ “effects coding” in this manner given the lack of a clear reference
group among the three profiles. Subsequently, pairwise differences between
profiles were assessed using Games-Howell tests, implemented via the
rstatix package in R112,124. We applied FDR correction for multiple com-
parisons to account for the three symptommodels. Independent of theOLS
models, Spearman correlations were fit to determine whether the clinical
measures correlated with the covariates for continuous measures. Correla-
tions among clinical symptom measures, covariates, and LPA indicator
variables of interest are presented in Fig. S1.

Sensitivity analyses
In order to parse the relative contribution of cumulative adversity exposure
in the present findings, we conducted two sensitivity analyses. First, we refit
the LPA modeling pipeline using a single variable indexing cumulative
lifetime adversity exposure instead of the four variables indexing the count
of adversity exposures within each developmental stage. This single variable
was submitted alongside the neural variables to the LPA model (hippo-
campal activation during the threat vs. safety contrast, amygdala activation
during the threat vs. safety contrast, vmPFC area 24 activation during the
threat vs. safety contrast, vmPFC area 25 activation during the threat vs.
safety contrast, vmPFC areas 32 and 14m activation during the threat vs.
safety contrast, and dACC activation during the threat vs. safety contrast).
We compared information criteria to determine the best-fitting profile
solution and then ordered the resulting profiles from least to most cumu-
lative adversity exposure to facilitate profile assignment comparison
between the present model and our original model. We then computed a
Spearman correlation between the present profile assignments and the
profile assignments from the original analysis to quantify similarity. Second,
we sought to determine whether cumulative adversity exposure displayed a
quadratic association with anxiety symptoms, as would be expected if the
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anxiety-related differences between profiles were primarily driven
by cumulative adversity exposure. We fit an OLS regression model using
transformed anxiety symptoms from the SCAARED questionnaire as the
dependent variable, the sum score of cumulative adverse events (modeled as
a quadratic polynomial term) as the primary independent variable of
interest, and sex assigned at birth, age at questionnaire completion, total
household income, and total years of education as covariates. We then
examined the OLS results using a type III Sum of Squares ANOVA table to
maintain consistency with previous analyses.

Results
LPA model fitting results
We fit a latent profile model using both neural and adversity exposure data
across development and evaluated solutions formodels fit with the number
of latent profiles ranging from 1 to 6. Information criteria for each of these
solutions is presented inTable 2.Basedupon theBIC, theoptimalnumberof
profiles was determined to be k=3 (BIC=3364.296) given the superior ability
of the BIC to identify the correct number of profiles relative to other
information criteria115,125. The three-class solution also demonstrated
acceptably high scaled entropy (scaled entropy = 0.903), indicating high
classification confidence108. Using 1000 iterations of the bootstrapped like-
lihood ratio test, we confirmed that the three-profile solution demonstrated
superior fit relative to the two-profile solution (p = 0.004).

Statistical power
Next, we sought to confirm that we were adequately powered for the BIC to
reliably detect the class solution using two separate methods. First, we
computed distance between classes (i.e., average Cohen’s d) to assess sta-
tistical power. The averageCohen’sd betweenprofiles 1 and 2was 1.144, the
average Cohen’s d between profiles 1 and 3 was 1.085, and the average
Cohen’sdbetweenprofiles 2 and3was 0.723.This yielded anoverall average

value of 0.984, surpassing theminimumrecommended distance value of 0.8
for two out of three profiles and overall115. Next, we computed the distance
(Δ)104 between each pair of profiles (1 vs. 2:Δ= 4.230; 1 vs. 3:Δ= 3.814, 2 vs.
3: Δ = 2.781). Average separation across the three profiles (Δ = 3.608)
surpassed the threshold for >99% power (Δ = 3)104, suggesting that the
present sample shows sufficient separation for the BIC to correctly identify
the number of latent profiles. Finally, we confirmed that neither LPAprofile
assignment nor any of the indicator variables differed as a function of
counterbalanced task version (see Supplementary Results).

Latent profile characterization
The three latent profiles differed in adversity exposure across development
(Fig. 2; Table S1) and in neural activation when discriminating between
threat and safety across the vmPFC, hippocampus, and amygdala (Fig. 3).
Participants in latent profile 1 (n = 14) reported the fewest adverse expo-
sures across development and had lower adversity exposure within middle
childhood and adolescence than participants in latent profile 2 (psFDR<0.01;
Table 3). Latent profile 1 also demonstrated higher activation in the threat
vs. safety contrast specifically in regions of the vmPFC compared to latent
profiles 2 and 3 (ps < 0.001; Table 3); these findings were driven by higher
activation to threat cues and lower activation to safety cues (Table S2).
Participants in latent profile 2 (n = 66) reported a moderate number of
adverse exposures across development that were increased relative to latent
profile 1 specifically within middle childhood and adolescence
(psFDR = 0.001; Table 3). Latent profile 2 also demonstrated lower activation
in the threat vs. safety contrast, which differed from latent profile 1 in all
regions except for the dACC (ps < 0.01; Table 3) and from latent profile
3 specifically in the hippocampus and amygdala (ps < 0.01; Table 3). Lower
activation in the threat vs. safety contrast in latent profile 2 was pre-
dominantly driven by lower activation to threat in all regions (particularly
the hippocampus and amygdala) and higher activation to safety in the
vmPFC relative to latent profile 1 (Table S2). Participants in latent profile 3
(n = 40) reported the highest number of adverse exposures across devel-
opment, with higher adversity exposure within all developmental stages
than latent profiles 1 and2 (psFDR<0.01;Table 3). In addition, participants in
latent profile 3 demonstrated activation values close to zero in the threat vs.
safety contrast, driven by lowneural activation to both threat and safety cues
in all regions (Fig. 3). Compared to latent profile 2, latent profile 3 showed
higher activation to threat specifically in the hippocampus and amygdala
(ps < 0.05; Table S2). Descriptive statistics for adversity exposure by latent
profile are reported in Table S1, and full statistics for pairwise tests used to
characterize differences between latent profiles in indicator variables are
presented in Table 3. Statistics for between-profile differences in the threat
vs. baseline and safety vs. baseline contrasts are presented in Table S2.
Demographic information for each profile is presented in Table S3.

Table 2 | LPA information criteria

Number of latent
profiles

BIC AIC Scaled entropy

1 3501.202 3445.453

2 3378.922 3264.635 0.868

3 3364.269 3191.445 0.903

4 3385.042 3153.680 0.911

5 3419.133 3129.234 0.928

6 3452.278 3103.842 0.936

Information criterion values are presented for latent profile analysis (LPA) models with up to 6 latent
profiles.
BIC Bayesian Information Criterion, AIC Akaike Information Criterion.

Fig. 2 | Differences between latent profiles (n= 14 in profile 1; n= 66 in profile 2;
n= 40 in profile 3) in adversity exposure within each developmental stage are
presented. Mann–Whitney U-tests with FDR correction were used. The adversity
exposure measures presented here are standardized residuals obtained following

covariate regression. In this figure, the box shows the data quartiles and the whiskers
show the data range. Points that are determined to be “outliers” using the inter-
quartile range method are plotted outside the whiskers. ns not significant; *p < 0.05;
**p < 0.01; ***p < 0.001.
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Differences in neural discrimination within each profile
Next, we sought to formally test whether individuals within each latent
profile displayed differential activation to threat and safety cues (i.e., whe-
ther individuals were neurally discriminating between threat and safety). To
do this,we conducted two-tailed one-sample t-testswithin each latent profile
to evaluatewhether neural activation in the threat vs. safety contrast differed
statistically from zero. Statistics are presented in Table 4. Overall, neural
activation in the threat vs. safety contrast in latent profile 1 differed from
zero in all neural regions except the dACC (psFDR< 0.05; Table 4), sug-
gesting individuals in this profile discriminated between threat and safety
cues. Neural activation in latent profile 2 also differed fromzero in all neural
regions except for vmPFC area 24 and the dACC (pFDR< 0.05; Table 4).
However, neural activation in the threat vs. safety contrast in latent profile 3
did not differ statistically from zero in any of the ROIs examined
(psFDR>0.05; Table 4).

Associations with clinical symptoms
Finally, we used OLS models to examine differences between latent
profiles in anxiety symptoms, trauma-related symptoms, and externa-
lizing symptoms. The omnibus model for anxiety symptoms was sig-
nificant (F(20, 84) = 1.740, p = 0.042), and the main effect of latent profile
on anxiety symptoms was significant (F(2) = 4.404, p = 0.015). Post-hoc
Games–Howell tests revealed that latent profile 1 (M = 5.762, SD = 1.030)
had significantly higher anxiety symptoms than latent profile 2
(M = 4.692, SD = 1.403; mean difference = –1.000, SE = 0.243, 95%
CI = [–1.865, –0.134], p= 0.022, d = 0.811, 95% CId= [0.317, 1.380]).
Latent profile 2 (M = 4.692, SD = 1.403) also displayed significantly

lower anxiety symptoms than latent profile 3 (M = 5.461, SD = 1.527;
mean difference = 0.821, SE = 0.226, 95% CI = [0.057, 1.586], p = 0.032,
d = –0.539, 95% CId= [–0.931, –0.043]), but there was no statistically
significant evidence that latent profiles 1 and 3 differed in anxiety
symptoms (mean difference = –0.178, SE = 0.283, 95% CI = [–1.162,
0.806], p= 0.897, d = 0.128, 95% CId= [–0.300, 0.799]; Fig. 4). Omni-
bus models were not significant for trauma-related symptoms

Fig. 3 | Differences between latent profiles (n= 14 in profile 1; n= 66 in profile 2;
n= 40 in profile 3) in neural activation are presented. Games-Howell post-hoc
tests were used to determine whether activation differed across profiles for each ROI
and contrast. The threat vs. safety contrast is presented in the first row, the threat vs.
baseline contrast is presented in the second row, and the safety vs. baseline contrast is

presented in the third row. The neural activation measures shown here are stan-
dardized residuals obtained following covariate regression. In this figure, the box
shows the data quartiles and the whiskers show the data range. Points that are
determined to be “outliers” using the inter-quartile rangemethod are plotted outside
the whiskers. ns = not significant; *p < 0.05; **p < 0.01; ***p < 0.001.

Fig. 4 | Games-Howell post-hoc tests yielded differences in anxiety symptoms
between latent profiles 1 and 2 and between latent profiles 2 and 3 (n= 12 in
profile 1; n= 58 in profile 2; n= 35 in profile 3). In this figure, the box shows the
data quartiles and the whiskers show the data range. Points that are determined to be
“outliers” using the inter-quartile range method are plotted outside the whiskers.
ns not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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(F(20, 74) = 1.604, p = 0.074) or externalizing symptoms (F(20,
82) = 1.362, p = 0.166), nor was the main effect of latent profile on either
symptom measure significant (trauma-related symptoms: F(2) = 0.396,
p = 0.674; externalizing symptoms: F(2) = 2.995, p = 0.087). As these
models were not significant, post-hoc tests were not examined. Following
multiple comparisons correction across OLS models for the three clinical
symptommeasures, the main effect of latent profile on anxiety symptoms
survived (pFDR= 0.045). Spearman correlations among LPA indicator
variables, clinical symptom measures, and covariates are presented
in Fig. S1.

Sensitivity Analyses
In order to disentangle the extent towhich the present resultsmay be driven
by cumulative adversity exposure, we conducted two sensitivity analyses.
First, we refit the LPA model using a single variable indexing cumulative
lifetime adversity exposure instead of the four variables indexing the count
of adversity exposures within each developmental stage. As in previous
analyses, we reliedon theBIC to indicate the correct class solution. The two-
class solution showed the lowest BIC value (BIC = 2415.043; Table S4),
suggesting that a two-class solution fit the data best. Class assignment in the
two-class solution was weakly correlated with that of our original model
(Spearman’s r = 0.211, p = 0.021). Furthermore, choosing to fit a three-class
solution for consistency with previous analyses (despite it not being indi-
cated by the BIC) did not recapitulate the solution observed with the
developmental adversity variables, instead showing only weak correlation
with class assignment in the original model (Spearman’s r = 0.196,
p = 0.032). This three-class solution also did not show evidence of a statis-
tically significant difference in anxiety symptoms across profiles
(F(2) = 0.584, p = 0.560). These results suggest that cumulative exposure
alonedoesnot drive results of thepresent analysis, and that collapsing across
developmental stage may obscure person-specific patterns of adversity
exposure and neural activation that are relevant to mental health. Next, we
sought to parse the extent to which the observed differences in anxiety
symptoms between the profilesmay be due to between-profile differences in
cumulative adversity exposure rather than due to between-profile differ-
ences in thedevelopmental timingof adversity exposure.Todo this,wefit an
OLS model to test whether cumulative adversity exposure showed a
quadratic association with anxiety symptoms—in other words, to see if
moderate adversity exposure was associated with lower anxiety, relative to
lower and higher levels of adversity exposure, across the whole sample.
Results did not show evidence of a significant quadratic association between
anxiety symptoms and cumulative number of adverse events (F(1) = 2.531,
p = 0.115). Together, these sensitivity analyses suggest that accounting for
developmental stage when modeling the effects of adversity exposure may
provide insight above and beyond cumulative exposure alone into hetero-
geneity in mental health outcomes.

Discussion
Parsing heterogeneity in neurobehavioral processes and mental health
following adversity is a crucial step toward improving understanding of
risk and resilience. In the present exploratory study, we leveraged a person-
centered approach to identify profiles of individuals characterized by
shared patterns of adversity exposure across development, from early
childhood through young adulthood, and neural activation to threat and
safety. Three latent profiles emerged, which displayed differences in
developmental adversity exposure, neural responses during threat and
safety learning, and anxiety symptoms in young adulthood. The first latent
profile was characterized by lower levels of lifetime adversity exposure,
higher activation to threat, and lower activation to safety. The second latent
profile was characterized by moderate adversity exposure within middle
childhood and adolescence, together with lower neural activation to threat
and higher neural activation to safety. The third latent profile was char-
acterized by higher levels of lifetime adversity exposure and diminished
neural discrimination between threat and safety cues. Individuals in the
second latent profile had the lowest levels of anxiety symptoms, whereasT
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individuals in the first and third latent profiles had relatively higher levels of
anxiety that did not statistically differ. Together, these findings suggest that
both the timing and number of adversity exposures across development
may be linkedwith distinct patterns of neural discrimination between threat
and safety and that these joint patterns may be relevant for understanding
anxiety risk.

The present findings add to a growing body of evidence that significant
adversity exposure during development is associated with weaker neural
discrimination between threat and safety cues in the context of aversive
learning30. Specifically, we found that the co-occurrence of high lifetime
adversity exposure and diminished neural threat/safety discrimination in
the third latent profile was driven by blunted neural activation to both the
threat and safety cues, aligning with prior evidence of blunted reactivity to
threat among individuals with high levels of adversity exposure30,32,33,40.
Interestingly, neural activation to threat in the third latent profile differed
from the second latent profile––characterized by lower anxiety––in only a
few brain regions. Specifically, individuals in the third latent profile showed
slightly increased activation to the threat cue in the hippocampus and
amygdala relative to individuals in the second latent profile. We posit that
these patterns could reflect disrupted prefrontal regulation of subcortical
regions in the third latent profile, or, conversely,more effective regulation of
subcortical regions by the vmPFC in the second latent profile when faced
with threat. Importantly, however, determining the cognitive correlates of
diminished neural discrimination—i.e., whether diminished neural dis-
crimination reflects diminished learning or an alternative process (e.g.,
decreased salience of both conditions despite learning)—will require addi-
tional research.

Contrary to our hypothesis that a profile would emerge with both the
highest levels of adversity exposure and the highest levels of anxiety
symptoms, we did not observe a linear relation between adversity exposure
and anxiety across latent profiles. Indeed, individuals in the first latent
profile, who had low lifetime adversity exposure and high neural dis-
crimination between threat and safety, displayed levels of anxiety similar to
those in the third latent profile (who had high lifetime adversity exposure
and showed low neural discrimination between threat and safety). We
hypothesize that the first latent profile reflects individuals whose anxiety
symptomsmaybe unrelated to adversity exposure, in turn corresponding to
distinct patternsof neural activationduring threat and safety learning.These
results suggest that although individuals may present similarly clinically
(e.g., levels of anxiety that do not statistically differ between profiles 1 and 3),
the role of threat and safety learning and its neural and experiential
underpinnings may vary substantially across individuals.

The second latent profile (characterized by greater levels of adversity
exposurewithinmiddle childhood and adolescence relative to thefirst latent
profile, with neural threat/safety discrimination driven by increased pre-
frontal activation to safety) displayed the lowest levels of anxiety in young
adulthood. Thisfinding contrastswith ourhypothesis that individuals in the
latent profile with the lowest levels of adversity exposure would also display
the lowest levels of anxiety symptoms. Instead, results suggest that among
some individuals, moderate levels of adversity exposure during middle
childhood and adolescence could be associatedwith processes that, together
with a specific neural phenotype, foster future resilience to anxiety. These
protective effects may be mediated in part by the prefrontal cortex22,126. The
prefrontal cortex exhibits a protracted developmental timeline and under-
goes circuit refinement throughout adolescence and into early
adulthood50–52,127,128. Viewed through an adaptive lens129, enhanced pre-
frontal neuroplasticity during the adolescent period may facilitate neural
adaptations to chronic, mild stress that promote resilience to future
stressors8,126. Indeed, longitudinal evidence froma large study characterizing
neural correlates of a resilience ‘r’ factor found that increased reward
responsivity in prefrontal regions and decreased hippocampal response to
threat were associated with higher ‘r’ factor scores130. These results dovetail
with the present findings to suggest that relatively greater prefrontal
engagement and lower subcortical reactivity may reflect more ‘resilient’
functioning across task domains.

Further, studies in rodents and non-human primates21,24–26 as well as in
humans131–134 suggest that low-to-moderate levels of stress during devel-
opment may promote resilience against future stressors. These reports are
consistent with the present results, which suggest that both number of
exposures and timing of exposures may play a role in shaping neural and
behavioral phenotypes. In sensitivity analyses, we demonstrated that the
present profile solution cannot be recapitulated using a measure of cumu-
lative adversity exposure instead of adversity exposures binned by devel-
opmental stage. Further, therewas no evidenceof a sample-wide, non-linear
association between cumulative adversity exposure and anxiety symptoms.
Together, these results suggest that the developmental timing of adversity
may meaningfully interact with the number, or frequency, of adversity
exposures together with neural functioning to shape behavior and that
adversity exposure during middle childhood and adolescence may be par-
ticularly impactful. These findings align with results from a recent study,
which identifiedmiddle childhoodas an especially important timewhenkey
experiential elements of adversity such as predictability and controllability
might buffer against risk for adversity-related psychopathology70, high-
lighting the importance of this developmental stage for understanding
resilience. While parsing additional experiential elements of adversity was
not possible in the current sample, future studies that examine neurobio-
logical processes linking experiential and timing-related elements of
adversity with later mental health will be helpful for understanding
mechanisms of resilience.

Limitations
The present findings should be interpreted in the context of several
important limitations. First, this study was conducted with a laboratory-
based sample of participants who completed detailed clinical interviews,
resulting in rich phenotyping of adversity exposure. While this type of
methodological detail holds promise for advancing the science of adversity
exposure and neurodevelopment, it constrains the sample size that is fea-
sible to collect. Although the latent profiles reported in this study demon-
strated acceptable entropy and distance, themodest overall sample sizemay
have restricted the ability of LPA to identify and resolvemore “rare” profiles
that represent relatively small proportions of the overall sample114,135.
Similarly, due to sample size we did not parse adversity exposure by addi-
tional relevant dimensions, such as predictability, controllability, threat, or
deprivation6,9,136. Future work probing interactions between the develop-
mental timing of adversity and such dimensions could provide more
granular insight into how adverse events impact threat and safety learning
and mental health. Additionally, adversity exposure was assessed via ret-
rospective report through clinical interviews in the present study. Although
concordance between retrospective and prospective report of adversity has
been shown to be higher when data are collected through interviews relative
to questionnaires137, participantsmay not have been able to recall all adverse
events, particularly those experienced in early childhood138. Despite this
limitation139, retrospective report of adversity has been shown to better
predict adult mental health symptoms compared with more “objective”
adversitymeasures140,141. Future studieswith large-scale longitudinal cohorts
that systematically characterize children’s environments, including both
adversity exposure and putative resilience factors142,143, are needed to dis-
entangle both the role of childhood experiences in shaping neurodevelop-
ment and mental health, as well as the comparative predictive utility of
prospective and retrospective report of adversity exposure137. The present
study also comprised predominantly high-functioning young adults (i.e.,
who were able to complete research paradigms including an aversive
learning fMRI task and scan) and excluded several comorbid diagnoses,
which may partially explain why the second profile (which showed mod-
erate adversity exposure during middle childhood and adolescence,
increased neural activation to safety, and lower anxiety in young adulthood)
comprised the largest proportion of study participants. While resilience
remains a common outcome following adversity144, how the present find-
ings and interpretations may differ among individuals with severe psy-
chopathology remains to be explored. Finally, our sample comprised young
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adults who were predominantly White with higher income and college
educations. Replicating these findings in a large, socio-economically and
demographically diverse sample will be important for understanding the
extent to which these associations generalize to the broader population145.

Conclusions
The present study employed a data-driven, person-centered approach to
characterize shared patterns of adversity exposure across development and
neural discrimination between threat and safety in young adulthood. Our
findings are consistentwithprevious research linkinghigh levels of adversity
exposurewithdiminishedneural discrimination in responding to threat and
safety cues and suggest that low-to-moderate levels of adversity exposure
duringmiddle childhood and adolescencemay relate to neural threat/safety
discrimination in ways that foster resilience to future anxiety for some
young adults. Further, our findings suggest that distinct patterns of corti-
colimbic activation when responding to threat and safety may underlie
relations between adversity exposure and anxiety. Ultimately, better
understanding of how the developmental timing and number of adversity
exposures jointly influence the development of corticolimbic circuits sup-
porting affective learning and mental health could help to elucidate the
neural underpinnings of anxiety disorders and inform personalized,
developmentally-informed interventions for youth exposed to adversity.

Data availability
The dataset used in this study can be found at https://github.com/Yale-
CANDLab/Shapes_DevAdversity_LPA.

Code availability
Analysis code for this study can be found at https://github.com/Yale-
CANDLab/Shapes_DevAdversity_LPA.

Received: 29 July 2024; Accepted: 16 January 2025;

References
1. Green, J. G. et al. Childhood adversities and adult psychiatric

disorders in the national comorbidity survey replication I:
associations with first onset of DSM-IV disorders. Arch. Gen.
Psychiatry 67, 113–123 (2010).

2. Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M. &
Navalta, C. P. Developmental neurobiology of childhood stress and
trauma. Psychiatr. Clin. N. Am. 25, 397–426 (2002). vii-viii.

3. Copeland, W. E. et al. Association of childhood trauma exposure
with adult psychiatric disorders and functional outcomes. JAMA
Netw. Open 1, e184493 (2018).

4. Bonanno G. A., Chen S., Galatzer-Levy I. R. Resilience to potential
trauma and adversity through regulatory flexibility. Nat. Rev.
Psychol. 2, 663–675 (2023).

5. Brutzman, B., Bustos, T. E., Hart, M. J. & Neal, J. W. A new wave of
context: Introduction to the special issue on socioecological
approaches to psychology. Transl. Issues Psychol. Sci. 8, 177–184
(2022).

6. Cohodes, E. M., Kitt, E. R., Baskin-Sommers, A. & Gee, D. G.
Influences of early-life stress on frontolimbic circuitry: Harnessing a
dimensional approach to elucidate the effects of heterogeneity in
stress exposure. Dev. Psychobiol. 63, 153–172 (2021).

7. Ellis, B. J., Figueredo, A. J., Brumbach, B. H. & Schlomer, G. L.
Fundamental dimensions of environmental risk: the impact of harsh
versus unpredictable environments on the evolution and
development of life history strategies. Hum. Nat. Hawthorn. N. 20,
204–268 (2009).

8. Gee,D.G. &Casey, B. The impact of developmental timing for stress
and recovery. Neurobiol. Stress 1, 184–194 (2015).

9. McLaughlin, K. A., Sheridan, M. A. & Lambert, H. K. Childhood
adversity and neural development: deprivation and threat as distinct

dimensions of early experience. Neurosci. Biobehav Rev. 47,
578–591 (2014).

10. Andersen, S. L. Trajectories of brain development: point of
vulnerability or window of opportunity?Neurosci. Biobehav Rev. 27,
3–18 (2003).

11. Greenough,W. T., Black, J. E. &Wallace, C. S. Experience and brain
development. Child Dev. 58, 539–559 (1987).

12. Tottenham N., Sheridan M. A review of adversity, the amygdala and
the hippocampus: a consideration of developmental timing. Front.
Hum. Neurosci. (2010). https://www.frontiersin.org/articles/10.
3389/neuro.09.068.2009

13. Tsoory, M. & Richter-Levin, G. Learning under stress in the adult rat
is differentially affected by ‘juvenile’ or ‘adolescent’ stress. Int J.
Neuropsychopharmacol. 9, 713–728 (2006).

14. Green,M. R., Barnes, B. &McCormick, C.M. Social instability stress
in adolescence increases anxiety and reduces social interactions in
adulthood in male long–evans rats. Dev. Psychobiol. 55, 849–859
(2013).

15. Meyer, H. C., Gerhard, D. M., Amelio, P. A. & Lee, F. S. Pre-
adolescent stressdisrupts adult, but not adolescent, safety learning.
Behav. Brain Res. 400, 113005 (2021).

16. Negrón-Oyarzo, I., Pérez, M. Á., Terreros, G., Muñoz, P. & Dagnino-
Subiabre, A. Effectsof chronic stress in adolescenceon learned fear,
anxiety, andsynaptic transmission in the rat prelimbic cortex.Behav.
Brain Res. 259, 342–353 (2014).

17. Tsotsokou, G., Nikolakopoulou, M., Kouvelas, E. D. & Mitsacos, A.
Neonatal maternal separation affects metabotropic glutamate
receptor 5 expressionandanxiety-relatedbehavior of adult rats.Eur.
J. Neurosci. 54, 4550–4564 (2021).

18. Yohn, N. L. & Blendy, J. A. Adolescent chronic unpredictable stress
exposure is a sensitive window for long-term changes in adult
behavior inmice.Neuropsychopharmacology42, 1670–1678 (2017).

19. Manzano-Nieves, G., Gaillard, M., Gallo, M. & Bath, K. G. Early life
stress impairs contextual threat expression in female, but not male,
mice. Behav. Neurosci. 132, 247–257 (2018).

20. Moaddab, M., Wright, K. M. & McDannald, M. A. Early adolescent
adversity alters periaqueductal gray/dorsal raphe threat responding
in adult female rats. Sci. Rep. 10, 18035 (2020).

21. Chaby L. E. et al. Repeated stress exposure in mid-adolescence
attenuates behavioral, noradrenergic, and epigenetic effects of
trauma-like stress in early adultmale rats.Sci. Rep.10, 17935 (2020).

22. Cotella E. M. et al. Adolescent stress confers resilience to traumatic
stress later in life: role of the prefrontal cortex. Biol. Psychiatry Glob.
Open Sci. 3, 274–282 (2022).

23. Montes-Rodríguez,C. J. et al. Activity-dependent synaptic plasticity
in the medial prefrontal cortex of male rats underlies resilience-
related behaviors to social adversity. J. Neurosci. Res. 102, e25377
(2024).

24. Parker, K. J., Buckmaster, C. L., Schatzberg, A. F. & Lyons, D. M.
Prospective investigation of stress inoculation in young monkeys.
Arch. Gen. Psychiatry 61, 933–941 (2004).

25. Ricon, T., Toth, E., Leshem, M., Braun, K. & Richter-Levin, G.
Unpredictable chronic stress in juvenile or adult rats has opposite
effects, respectively, promoting and impairing resilience. Stress 15,
11–20 (2012).

26. Suo, L. et al. Predictable chronic mild stress in adolescence
increases resilience in adulthood. Neuropsychopharmacology 38,
1387–1400 (2013).

27. Grasser, L. R. & Jovanovic, T. Safety learning during development:
Implications for development of psychopathology. Behav. Brain
Res. 408, 113297 (2021).

28. RugeJ. et al. Howadversechildhoodexperiencesget under theskin:
a systematic review, integration and methodological discussion on
threat and reward learningmechanisms.GillanC.M.,WassumK.M.,
eds. eLife. 13, e92700 (2024).

https://doi.org/10.1038/s44271-025-00193-x Article

Communications Psychology |            (2025) 3:31 12

https://github.com/Yale-CANDLab/Shapes_DevAdversity_LPA
https://github.com/Yale-CANDLab/Shapes_DevAdversity_LPA
https://github.com/Yale-CANDLab/Shapes_DevAdversity_LPA
https://github.com/Yale-CANDLab/Shapes_DevAdversity_LPA
https://www.frontiersin.org/articles/10.3389/neuro.09.068.2009
https://www.frontiersin.org/articles/10.3389/neuro.09.068.2009
https://www.frontiersin.org/articles/10.3389/neuro.09.068.2009
www.nature.com/commspsychol


29. Qiu, Y., Dou, H., Dai, Y., Li, H. & Lei, Y. The influence of being left
behind on fear acquisition and academic performance—a study of
left-behind children. Curr. Psychol. 42, 28095–28106 (2022).

30. DeCross, S. N., Sambrook, K. A., Sheridan, M. A., Tottenham, N. &
McLaughlin, K. A.Dynamic alterations in neural networks supporting
aversive learning in children exposed to trauma: neural mechanisms
underlying psychopathology. Biol. Psychiatry 91, 667–675 (2022).

31. Klingelhöfer-Jens M. et al. Reduced discrimination between signals
of danger and safety but not overgeneralization is linked to exposure
to childhood adversity in healthy adults. eLife. 12, 1–38 (2024).

32. McLaughlin, K. A. et al. Maltreatment exposure, brain structure, and
fear conditioning in children and adolescents.
Neuropsychopharmacol. Publ. Am. Coll. Neuropsychopharmacol.
41, 1956–1964 (2016).

33. Machlin L., Miller A. B., Snyder J., McLaughlin K. A., Sheridan M. A.
Differential associations of deprivation and threat with cognitive
control and fear conditioning in early childhood. Front. Behav.
Neurosci. 13, 1–14 (2019).

34. Stout, D. M. et al. Dissociable impact of childhood trauma and
deployment trauma on affective modulation of startle. Neurobiol.
Stress 15, 100362 (2021).

35. Herringa, R. J. et al. Enhanced prefrontal-amygdala connectivity
following childhood adversity as a protective mechanism against
internalizing in adolescence. Biol. Psychiatry Cogn. Neurosci.
Neuroimaging 1, 326–334 (2016).

36. Tottenham, N. et al. Elevated amygdala response to faces following
early deprivation. Dev. Sci. 14, 190–204 (2011).

37. vanHarmelen, A. L. et al. Enhanced amygdala reactivity to emotional
faces in adults reporting childhood emotional maltreatment. Soc.
Cogn. Affect Neurosci. 8, 362–369 (2013).

38. Huskey, A., Taylor, D. J. & Friedman, B. H. “Generalized unsafety” as
fear inhibition to safety signals in adults with and without childhood
trauma. Dev. Psychobiol. 64, e22242 (2022).

39. Wolitzky-Taylor, K. et al. Adversity in early and midadolescence is
associated with elevated startle responses to safety cues in late
adolescence. Clin. Psychol. Sci. 2, 202–213 (2014).

40. Sicorello,M., Thome, J., Herzog, J. &Schmahl, C. Differential effects
of early adversity and posttraumatic stress disorder on amygdala
reactivity: the role of developmental timing. Biol. Psychiatry Cogn.
Neurosci. Neuroimaging 6, 1044–1051 (2021).

41. Zhu, J., Anderson, C. M., Ohashi, K., Khan, A. & Teicher, M. H.
Potential sensitive period effects of maltreatment on amygdala,
hippocampal and cortical response to threat.Mol. Psychiatry 28,
5128–5139 (2023).

42. Levy, I. & Schiller, D. Neural computations of threat. Trends Cogn.
Sci. 25, 151–171 (2021).

43. Zugman, A., Winkler, A. M. & Pine, D. S. Recent advances in
understanding neural correlates of anxiety disorders in children and
adolescents. Curr. Opin. Psychiatry 34, 617–623 (2021).

44. Peng, Y. et al. Threat neurocircuitry predicts the development of
anxiety and depression symptoms in a longitudinal study. Biol.
Psychiatry Cogn. Neurosci. Neuroimaging 8, 102–110 (2023).

45. Sequeira, S. L. et al. Pathways to adolescent social anxiety: testing
interactions between neural social reward function and perceived
social threat in daily life. Dev. Psychopathol. 27, 1–16 (2024).

46. Borchers, L. R., Gifuni, A. J., Ho, T. C., Kirshenbaum, J. S. &Gotlib, I.
H. Threat- and reward-related brain circuitry, perceived stress, and
anxiety in adolescents during the COVID-19 pandemic: a
longitudinal investigation. Soc. Cogn. Affect Neurosci. 19, nsae040
(2024).

47. Lonsdorf, T. B., Haaker, J. & Kalisch, R. Long-term expression of
human contextual fear and extinction memories involves amygdala,
hippocampus and ventromedial prefrontal cortex: a reinstatement
study in two independent samples. Soc. Cogn. Affect Neurosci. 9,
1973–1983 (2014).

48. Casey, B. J. Beyond simple models of self-control to circuit-based
accounts of adolescent behavior. Annu. Rev. Psychol. 66, 295–319
(2015).

49. Alex, A. M. et al. A global multicohort study to map subcortical brain
development and cognition in infancy and early childhood. Nat.
Neurosci. 27, 176–186 (2024).

50. Larsen, B. & Luna, B. Adolescence as a neurobiological critical
period for the development of higher-order cognition. Neurosci.
Biobehav. Rev. 94, 179–195 (2018).

51. Sydnor, V. J. et al. Neurodevelopment of the association cortices:
patterns, mechanisms, and implications for psychopathology.
Neuron 109, 2820–2846 (2021).

52. Sydnor, V. J. et al. Intrinsic activity development unfolds along a
sensorimotor–association cortical axis in youth. Nat. Neurosci. 26,
638–649 (2023).

53. Larsen, B. et al. A developmental reduction of the excitation:inhibition
ratio in association cortex during adolescence. Sci. Adv. 8, eabj8750
(2022).

54. Olson, I., VonDerHeide, R. J., Alm, K. & Vyas,G. Development of the
uncinate fasciculus: implications for theory and developmental
disorders. Dev. Cogn. Neurosci. 14, 50–61 (2015).

55. Sisk, L. M. & Gee, D. G. Stress and adolescence: vulnerability and
opportunity during a sensitive window of development. Curr. Opin.
Psychol. 44, 286–292 (2022).

56. Tottenham, N. Early adversity and the neotenous human brain. Biol.
Psychiatry 87, 350–358 (2020).

57. Jovanovic, T. et al. Development of fear acquisition and extinction in
children: effects of age and anxiety. Neurobiol. Learn Mem. 113,
135–142 (2014).

58. Michalska, K. J. et al. A developmental analysis of threat/safety
learning and extinction recall during middle childhood. J. Exp. Child
Psychol. 146, 95–105 (2016).

59. Pattwell, S. S. et al. Altered fear learning across development in both
mouse and human. Proc. Natl Acad. Sci. 109, 16318–16323 (2012).

60. Conley, M. I., Hernandez, J., Salvati, J. M., Gee, D. G. & Baskin-
Sommers, A. The role of perceived threats on mental health, social,
and neurocognitive youth outcomes: a multicontextual, person-
centered approach. Dev. Psychopathol. 2, 1–22 (2022).

61. Ricard, J. R., Hyde, L. W. & Baskin-Sommers, A. Person-centered
combinations of individual, familial, neighborhood, and structural
risk factors differentially relate to antisocial behavior and
psychopathology. Crim. Justice Behav. 20, 00938548241246146
(2024).

62. Ruiz, S. G., Brazil, I. A. & Baskin-Sommers, A. Distinct neurocognitive
fingerprints reflect differential associations with risky and impulsive
behavior in a neurotypical sample. Sci. Rep. 13, 11782 (2023).

63. Magnusson D., Stattin H. Person-context interaction theories. in
Handbook of Child Psychology: Theoretical Models of Human
Development 5th edn, Vol. 1 (John Wiley & Sons, Inc., 1998)
685–759.

64. Vermunt, J. K. Latent class modeling with covariates: two improved
three-step approaches. Polit. Anal. 18, 450–469 (2010).

65. Vermunt, J. K. & Magidson, J. Latent class analysis. Sage Encycl.
Soc. Sci. Res Methods 2, 549–553 (2004).

66. McLaughlin, K. A. et al. Childhood adversities and adult psychiatric
disorders in the national comorbidity survey replication II:
associations with persistence of DSM-IV disorders. Arch. Gen.
Psychiatry 67, 124–132 (2010).

67. Cohodes, E.M. et al. Development and validation of theDimensional
Inventory of Stress and Trauma Across the Lifespan (DISTAL): a
novel assessment tool to facilitate the dimensional study of
psychobiological sequelae of exposure to adversity. Dev.
Psychobiol. 65, e22372 (2023).

68. Patridge, E. F. & Bardyn, T. P. Research Electronic Data Capture
(REDCap). J. Med Libr Assoc. JMLA 106, 142–144 (2018).

https://doi.org/10.1038/s44271-025-00193-x Article

Communications Psychology |            (2025) 3:31 13

www.nature.com/commspsychol


69. Steinberg A. M., Brymer M. J., Decker K. B., Pynoos R. S., Address
M. The University of California at Los Angeles post-traumatic stress
disorder reaction index. https://link.springer.com/content/pdf/10.
1007%2Fs11920-004-0048-2.pdf

70. Cohodes, E. M. et al. Characterizing experiential elements of early-
life stress to inform resilience: Buffering effects of controllability and
predictability and the importance of their timing.Dev. Psychopathol.
27, 1–14 (2023).

71. Angulo, M. et al. Psychometrics of the Screen for Adult Anxiety
Related Disorders (SCAARED)- a new scale for the assessment of
DSM-5 anxiety disorders. Psychiatry Res. 253, 84–90 (2017).

72. Elliott, D. M. & Briere, J. Sexual abuse trauma among professional
women: validating the Trauma Symptom Checklist-40 (TSC-40).
Child Abus. Negl. 16, 391–398 (1992).

73. Rescorla L. A., Achenbach T. M. The Achenbach System of
Empirically Based Assessment (ASEBA) for ages 18 to 90 years. in
The Use of Psychological Testing for Treatment Planning and
Outcomes Assessment: Instruments for Adults 3rd edn, Vol. 3
(Lawrence Erlbaum Associates Publishers, 2004) 115–152.

74. Casey, B. J. et al. The Adolescent Brain Cognitive Development
(ABCD) study: imaging acquisition across 21 sites. Dev. Cogn.
Neurosci. 32, 43–54 (2018).

75. Glasser, M. F. et al. Consortium. The minimal preprocessing
pipelines for the Human Connectome Project. NeuroImage 80,
105–124 (2013).

76. Kribakaran, S. et al. Neural circuitry involved in conditioned inhibition
via safety signal learning is sensitive to trauma exposure.Neurobiol.
Stress. 17, 100497 (2022).

77. Meyer H. C. et al. Ventral hippocampus interacts with prelimbic
cortex during inhibition of threat response via learned safety in both
mice and humans. Proc Natl Acad Sci. 116, 26970–26979 (2019).

78. Odriozola P. et al. Hippocampal involvement in safety signal learning
varieswith anxiety amonghealthy adults.Biol PsychiatryGlob.Open
Sci. S2667174323000769 (2023).

79. Neumann, D. L., Waters, A. M. & Westbury, H. R. The use of an
unpleasant sound as the unconditional stimulus in aversive
Pavlovian conditioning experiments that involve children and
adolescent participants. Behav. Res Methods 40, 622–625 (2008).

80. Lonsdorf, T. B. et al. Don’t fear ‘fear conditioning’: methodological
considerations for the design and analysis of studies on human fear
acquisition, extinction, and return of fear. Neurosci. Biobehav Rev.
77, 247–285 (2017).

81. Gorgolewski, K. J. et al. Thebrain imagingdata structure, a format for
organizing and describing outputs of neuroimaging experiments.
Sci. Data 3, 160044 (2016).

82. Chang, H. & Fitzpatrick, J. M. A technique for accurate magnetic
resonance imaging in the presence of field inhomogeneities. IEEE
Trans. Med Imaging 11, 319–329 (1992).

83. Hagler, D. J. et al. Image processing and analysis methods for the
Adolescent Brain Cognitive Development Study. NeuroImage 202,
116091 (2019).

84. Morgan, P. S., Bowtell, R.W., McIntyre, D. J. O. &Worthington, B. S.
Correction of spatial distortion in EPI due to inhomogeneous static
magnetic fieldsusing the reversedgradientmethod.J.Magn.Reson,
Imaging JMRI 19, 499–507 (2004).

85. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved
optimization for the robust and accurate linear registration and
motion correction of brain images.NeuroImage 17, 825–841 (2002).

86. Tukey, J. W. Exploratory Data Analysis, Vol 2 (Addison-Wesley,
1977).

87. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. &
Petersen, S. E. Spurious but systematic correlations in functional
connectivity MRI networks arise from subject motion. NeuroImage
59, 2142–2154 (2012).

88. Jenkinson,M., Beckmann, C. F., Behrens, T. E. J.,Woolrich,M.W. &
Smith, S. M. Fsl NeuroImage 62, 782–790 (2012).

89. Kredlow, A. M., Fenster, R. J., Laurent, E. S., Ressler, K. J. & Phelps,
E. A. Prefrontal cortex, amygdala, and threat processing:
implications for PTSD. Neuropsychopharmacology 47, 247–259
(2022).

90. Milad,M. R. &Quirk, G. J. Fear extinction as amodel for translational
neuroscience: ten years of progress. Annu Rev. Psychol. 63,
129–151 (2012).

91. Odriozola, P. & Gee, D. G. Learning about safety: conditioned
inhibition as a novel approach to fear reduction targeting the
developing brain. Am. J. Psychiatry 178, 136–155 (2021).

92. Horien, C., Shen, X., Scheinost, D. & Constable, R. T. The individual
functional connectome is unique and stable over months to years.
NeuroImage 189, 676–687 (2019).

93. Mackey, S. & Petrides, M. Architecture and morphology of the
human ventromedial prefrontal cortex. Eur. J. Neurosci. 40,
2777–2796 (2014).

94. Rolls, E. T., Huang, C. C., Lin, C. P., Feng, J. & Joliot, M. Automated
anatomical labelling atlas 3. NeuroImage 206, 116189 (2020).

95. Van Dijk, K. R. A., Sabuncu, M. R. & Buckner, R. L. The influence of
head motion on intrinsic functional connectivity MRI. NeuroImage
59, 431–438 (2012).

96. Rapuano K. M. et al. Behavioral and brain signatures of substance
use vulnerability in childhood. Dev. Cogn. Neurosci. 46, 100878
(2020).

97. Sisk, L. M. et al. Genetic variation in endocannabinoid signaling is
associated with differential network-level functional connectivity in
youth. J. Neurosci. Res 100, 731–743 (2022).

98. Seabold, S. & Perktold, J. Statsmodels: econometric and modeling
with Python. In Proc 9th Python in Science Conference, Austin, 28
June-3 July. 57–61. https://doi.org/10.25080/Majora-92bf1922-011
(2010).

99. Eliot, L., Ahmed, A., Khan, H. & Patel, J. Dump the “dimorphism”:
Comprehensive synthesis of human brain studies reveals fewmale-
female differences beyond size. Neurosci. Biobehav Rev. 125,
667–697 (2021).

100. Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation
factor: as a condition for the inclusion of suppressor variable(s) in
regression analysis. Open J. Stat. 05, 754–767 (2015).

101. van Rossum G. Python tutorial. in Technical Report CS-R9526
(Centrum voor Wiskunde en Informatica (CWI), Amsterdam,
1995).

102. R Core Team. R: A language and environment for statistical
computing. Published online 2019. https://www.R-project.org/

103. Morin S. et al. StepMix: a python package for pseudo-likelihood
estimation of generalized mixture models with external variables.
http://arxiv.org/abs/2304.03853

104. Dalmaijer, E. S., Nord, C. L. & Astle, D. E. Statistical power for cluster
analysis. BMC Bioinform. 23, 205 (2022).

105. Bolck, A., Croon, M. & Hagenaars, J. Estimating latent structure
models with categorical variables: one-step versus three-step
estimators. Polit. Anal. 12, 3–27 (2004).

106. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6,
461–464 (1978).

107. Akaike H. Akaike’s information criterion. in Lovric M. (ed)
International Encyclopedia of Statistical Science (Springer, 2011).

108. Celeux, G. & Soromenho, G. An entropy criterion for assessing the
number of clusters in amixturemodel. J. Classif.13, 195–212 (1996).

109. McLachlan, G. J., Lee, S. X. & Rathnayake, S. I. Finite mixture
models. Annu Rev. Stat. Appl. 6, 355–378 (2019).

110. Mann, H. B. &Whitney, D. R. On a test of whether one of two random
variables is stochastically larger than the other. Ann. Math. Stat. 18,
50–60 (1947).

https://doi.org/10.1038/s44271-025-00193-x Article

Communications Psychology |            (2025) 3:31 14

https://link.springer.com/content/pdf/10.1007%2Fs11920-004-0048-2.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11920-004-0048-2.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11920-004-0048-2.pdf
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://www.R-project.org/
https://www.R-project.org/
http://arxiv.org/abs/2304.03853
http://arxiv.org/abs/2304.03853
www.nature.com/commspsychol


111. Benjamini, Y. &Hochberg, Y.Controlling the FalseDiscoveryRate: A
Practical and Powerful Approach toMultiple Testing. J. R. Stat. Soc.
Ser. B Methodol. 57, 289–300 (1995).

112. Games, P. A. & Howell, J. F. Pairwise multiple comparison
procedureswith unequal N’s and/or variances: aMonteCarlo study.
J. Educ. Stat. 13, 113–125 (1976).

113. Vallat, R. Pingouin: statistics in Python. J. Open Source Softw. 3,
1026 (2018).

114. Nylund-Gibson, K. & Choi, A. Y. Ten frequently asked questions
about latent class analysis. Transl. Issues Psychol. Sci. 4, 440–461
(2018).

115. Tein, J. Y., Coxe, S. & Cham, H. Statistical power to detect the
correct number of classes in latent profile analysis. Struct. Equ.
Model Multidiscip. J. 20, 640–657 (2013).

116. Jarque, C. M. & Bera, A. K. A test for normality of observations and
regression residuals. Int. Stat. Rev. Rev. Int. Stat. 55, 163 (1987).

117. Solmi, M. et al. Age at onset of mental disorders worldwide: large-
scale meta-analysis of 192 epidemiological studies.Mol. Psychiatry
27, 281–295 (2022).

118. Bath, K. G. Synthesizing views to understand sex differences in
response to early life adversity. Trends Neurosci. 43, 300–310
(2020).

119. Kessler, R. C. et al. Lifetime prevalence and age-of-onset
distributions of DSM-IV disorders in the National Comorbidity
Survey Replication. Arch. Gen. Psychiatry 62, 593–602 (2005).

120. Rakesh, D. & Whittle, S. Socioeconomic status and the developing
brain – A systematic review of neuroimaging findings in youth.
Neurosci. Biobehav Rev. 130, 379–407 (2021).

121. Tooley U. A. et al. Associations between neighborhood SES and
functional brain network development. Cereb. Cortex 30, 1–19
(2019).

122. Walker, J. A. Chapter 16 ANOVA tables. In Elements of Statistical
Modeling for Experimental Biology. https://www.middleprofessor.
com/files/applied-biostatistics_bookdown/_book/anova-tables
(2018).

123. Fox J., Weisberg S. An R Companion to Applied Regression. Third.
(Sage, 2019). https://www.john-fox.ca/Companion/

124. Kassambara A. rstatix: pipe-friendly framework for basic statistical
tests (2023). https://cran.r-project.org/web/packages/rstatix/index.
html

125. Nylund, K. L., Asparouhov, T. & Muthén, B. O. Deciding on the
number of classes in latent class analysis and growth mixture
modeling: a Monte Carlo simulation study. Struct. Equ. Model
Multidiscip. J. 14, 535–569 (2007).

126. Maier, S. F. & Watkins, L. R. Role of the medial prefrontal cortex in
coping and resilience. Brain Res. 1355, 52–60 (2010).

127. Giedd, J. N. et al. Brain development during childhood and
adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863
(1999).

128. Gogtay N. et al. Dynamic mapping of human cortical development
during childhood through early adulthood.Proc. Natl Acad. Sci. 101,
8174–8179 (2004).

129. Ellis, B. J., Bianchi, J., Griskevicius, V. & Frankenhuis, W. E. Beyond
risk and protective factors: an adaptation-based approach to
resilience. Perspect. Psychol. Sci. 12, 561–587 (2017).

130. Van Rooij S. J. H., et al. Defining the r factor for post-trauma
resilience and its neural predictors. Nat. Ment. Health 2, 680–693
(2024).

131. Oshri, A., Cui, Z., Carvalho, C. & Liu, S. Is perceived stress linked to
enhanced cognitive functioning and reduced risk for
psychopathology? Testing the hormesis hypothesis. Psychiatry
Res. 314, 114644 (2022).

132. Oshri A. et al. Strengthening through adversity: the hormesis model
in developmental psychopathology. Dev. Psychopathol. 36,
2390–2406 (2024).

133. Seery, M. D. Resilience: a silver lining to experiencing adverse life
events? Curr. Dir. Psychol. Sci. 20, 390–394 (2011).

134. Seery,M. D., Leo, R. J., Lupien, S. P., Kondrak, C. L. & Almonte, J. L.
An upside to adversity?: Moderate cumulative lifetime adversity is
associated with resilient responses in the face of controlled
stressors. Psychol. Sci. 24, 1181–1189 (2013).

135. Dalmaijer E. S. Tutorial: a priori estimation of sample size, effect size,
and statistical power for cluster analysis, latent class analysis, and
multivariate mixture models. Preprint at https://arxiv.org/abs/2309.
00866 (2023).

136. Ellis, B. J., Sheridan, M. A., Belsky, J. & McLaughlin, K. A. Why and
how does early adversity influence development? Toward an
integrated model of dimensions of environmental experience. Dev.
Psychopathol. 14, 1–25 (2022).

137. Baldwin, J. R., Reuben, A., Newbury, J. B. & Danese, A. Agreement
between prospective and retrospective measures of childhood
maltreatment: a systematic review and meta-analysis. JAMA
Psychiatry 76, 584–593 (2019).

138. Williams, L. M. Recall of childhood trauma: a prospective study of
women’s memories of child sexual abuse. J. Consult Clin. Psychol.
62, 1167–1176 (1994).

139. Brewin, C. R., Andrews, B. & Gotlib, I. H. Psychopathology and early
experience: a reappraisal of retrospective reports. Psychol. Bull.
113, 82–98 (1993).

140. Baldwin J. R., ColemanO., Francis E. R., Danese A. Prospective and
retrospective measures of child maltreatment and their association
with psychopathology: a systematic review and meta-analysis.
JAMA Psychiatry 81, 769-781 (2024).

141. Francis, E. R., Tsaligopoulou, A., Stock, S. E., Pingault, J. B. &
Baldwin, J. R. Subjective and objective experiences of childhood
adversity: a meta-analysis of their agreement and relationships with
psychopathology. J. Child Psychol. Psychiatry 64, 1185–1199
(2023).

142. Fritz J., de Graaff A. M., Caisley H., van Harmelen A. L., Wilkinson P.
O. A systematic review of amenable resilience factors thatmoderate
and/or mediate the relationship between childhood adversity and
mental health in young people. Front. Psychiatry 9, 1–17 (2018).

143. Van Harmelen, A. L. et al. Adolescent friendships predict later
resilient functioning across psychosocial domains in a healthy
community cohort. Psychol. Med. 47, 2312–2322 (2017).

144. Bonanno, G. A. & Westphal, M. The three axioms of resilience. J.
Trauma Stress. 37, 717–723 (2024).

145. Gurven, M. D. Broadening horizons: sample diversity and
socioecological theory are essential to the future of psychological
science. Proc. Natl Acad. Sci. 115, 11420–11427 (2018).

Acknowledgements
This research was supported by funding from National Institutes of Health
(NIH) Director’s Early Independence Award (DP5OD021370), Brain &
Behavior Research Foundation (NARSAD) Young Investigator Award,
National Science Foundation (NSF) CAREER Award (BCS-2145372),
Jacobs Foundation Early Career Research Fellowship, and The Society for
Clinical Child and Adolescent Psychology (Division 53 of the American
Psychological Association) Richard “Dick” Abidin Early Career Award and
Grant to DGG; Yale University Wu Tsai Institute (WTI) Innovation Grant to
ABS; NSF Graduate Research Fellowship Program award (NSF DGE-
1752134) andaDissertationFundingAward from theSociety forResearch in
Child Development to LMS; Yale Child Study Center Postdoctoral
T32MH18268 andBrain &Behavior ResearchFoundation (NARSAD) Young
Investigator Award #28436 to TJK; NSF Graduate Research Fellowship
Program award (NSF DGE-1752134) and a Scholar Award granted by the
International Chapter of the Philanthropic Educational Organization (P.E.O.
Foundation) to PO; NIMH National Research Service Award (NRSA
F30MH124271) toS.K.; NSFGraduateResearchFellowshipProgramaward
(NSF DGE-1752134), American Psychological Foundation Elizabeth

https://doi.org/10.1038/s44271-025-00193-x Article

Communications Psychology |            (2025) 3:31 15

https://www.middleprofessor.com/files/applied-biostatistics_bookdown/_book/anova-tables
https://www.middleprofessor.com/files/applied-biostatistics_bookdown/_book/anova-tables
https://www.middleprofessor.com/files/applied-biostatistics_bookdown/_book/anova-tables
https://www.john-fox.ca/Companion/
https://www.john-fox.ca/Companion/
https://cran.r-project.org/web/packages/rstatix/index.html
https://cran.r-project.org/web/packages/rstatix/index.html
https://cran.r-project.org/web/packages/rstatix/index.html
https://arxiv.org/abs/2309.00866
https://arxiv.org/abs/2309.00866
https://arxiv.org/abs/2309.00866
www.nature.com/commspsychol


Munsterberg Koppitz Child Psychology Graduate Fellowship, The Society
for Clinical Child and Adolescent Psychology (Division 53 of the American
Psychological Association) Donald Routh Dissertation Grant, a Dissertation
Funding Award from the Society for Research in Child Development, a
DissertationResearchAward from theAmericanPsychological Association,
an American Dissertation Fellowship from the American Association of
University Women (AAUW), and a Scholar Award granted by the
International Chapter of the Philanthropic Educational Organization (P.E.O.
Foundation) to EMC; a Scholar Award granted by the International Chapter
of the Philanthropic Educational Organization (P.E.O. Foundation), UMN
Doctoral Dissertation Fellowship, and Norman and Edith Garmezy
Fellowship to HRH; and Janet and Sheldon (1959) Razin Fellowship (MIT) to
SJZ. The funders had no role in study design, data collection and analysis,
decision topublish, or preparationof themanuscript.Weare grateful to each
of the participants, without whom this study would not have been possible.
We thankElizabethKitt for overseeingquality assessment for aportionof the
skin conductance response data included in this study and Jeffrey Mandell
for contributions to theprocessingpipeline;ZhiliangFang,EmmaGoodman,
Cristian Hernandez, Zoe Hopson, Neida Moreno, Cristina Nardini, Luise
Pruessner, Sophie Rader, Beatriz Rios, Hannah Spencer, and Janeen
Thomas for their assistance with data collection; and Reta Behnam, Bahar
Bouzarjomehri, Rob Colgate, Alice Dyer, Nathalie Eid, Gillian Gold, Emma
Goodman, Ana Greenberg, Cristian Hernandez, Jenn Huo, Amy Kwarteng,
Brandon Lopez, Lindiwe Mayinja, Olivia Meisner, Lauren Quintela, Isabel
Santiuste, Nisan Sele, Georgia Spurrier, Ashley Talton, Alissa Wong, and
Daphne Zhu for their assistancewith quality assessment of data used in this
study.Wewouldalso like to thankDr. EdwinDalmaijer for his assistancewith
conceptualizing the power analyses for LPA modeling.

Author contributions
D.G.G., L.M.S., E.M.C., andP.O.contributed tostudydesign. L.M.S., A.B.S.,
andD.G.G. conceptualizedanddesigned the analyses for thisproject. T.J.K.
andS.R. provided feedback on project and analytic design. L.M.S. analyzed
the data and interpreted the findings with support from A.B.S. and D.G.G.
T.J.K. reviewed code and analyses. E.M.C., S.M., J.C.P., P.O., S.K., J.T.H.,
S.J.Z., H.R.H., C.C., and L.M.S. contributed to data collection. L.M.S., P.O.,
E.M.C., S.M., J.C.P., andH.R.H. contributed toquality assessment and data
validation. L.M.S. drafted the paper and T.J.K., S.R., P.O., S.K., E.M.C.,
H.R.H., A.B.S., and D.G.G. provided review and editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary
material available at
https://doi.org/10.1038/s44271-025-00193-x.

Correspondence and requests for materials should be addressed to
Lucinda M. Sisk or Dylan G. Gee.

Peer review informationCommunicationsPsychology thanksMattiaGerin,
M. JustinKimand JessicaButhmann for their contribution to the peer review
of thiswork. PrimaryHandling Editor: JenniferBellingtier. Apeer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s44271-025-00193-x Article

Communications Psychology |            (2025) 3:31 16

https://doi.org/10.1038/s44271-025-00193-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commspsychol

	Person-centered analyses reveal that developmental adversity at moderate levels and neural threat/safety discrimination are associated with lower anxiety in early adulthood
	Methods
	Participants
	Assessment of adversity exposure
	Clinical symptoms
	MRI scanning
	Task design
	fMRI preprocessing
	fMRI first level analysis
	Region of interest (ROI) extraction and covariate regression
	Quality assessment and motion exclusion
	Data preparation and outlier removal
	Latent profile analysis
	Statistical power considerations
	Associations with clinical symptoms
	Sensitivity analyses

	Results
	LPA model fitting results
	Statistical power
	Latent profile characterization
	Differences in neural discrimination within each profile
	Associations with clinical symptoms
	Sensitivity Analyses

	Discussion
	Limitations

	Conclusions
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




